Suppr超能文献

测量用于仿生设备的铂电极的有效面积和电荷密度。

Measuring the effective area and charge density of platinum electrodes for bionic devices.

机构信息

ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia. The HEARing CRC, 550 Swanston St, Carlton, Melbourne 3010 Australia.

出版信息

J Neural Eng. 2018 Aug;15(4):046015. doi: 10.1088/1741-2552/aaba8b. Epub 2018 Mar 29.

Abstract

OBJECTIVE

Neural stimulation is usually performed with fairly large platinum electrodes. Smaller electrodes increase the applied charge density, potentially damaging the electrode. Greater understanding of the charge injection mechanism is required for safe neural stimulation.

APPROACH

The charge injection mechanism and charge injection capacity were measured by cyclic voltammetry. Electrodes were cleaned mechanically or by potential cycling in acidic solutions. The effective electrode area was measured by hydrogen adsorption or reduction of [Formula: see text].

MAIN RESULTS

The water window and safe potential window were affected by changes to electrolyte, electrode size, polishing method and oxygen concentration. Capacitance and Faradaic current contribute to the charge injection capacity. Varying voltammetric scan rate (measurement time), electrode size, polishing method, potential window, electrolyte and oxygen concentration affected the charge injection capacity and ratio of oxidation to reduction charge. Hydrogen adsorption in acidic solutions provided an inaccurate effective electrode area. Reduction of a solution phase redox species with a linear or radial diffusion profile could provide an effective electrode area. The charge density (charge injection capacity divided by electrode area) of a platinum electrode is dependent on the charge injection capacity and electrode area measurement technique. By varying cyclic voltammetric conditions, the charge density of platinum ranged from 0.15 to 5.57 mC cm.

SIGNIFICANCE

The safe potential window, charge injection mechanism, charge injection capacity and charge density of platinum depends on electrolyte, size of the electrode, oxygen concentration and differences in electrode polishing method. The oxidation and reduction charge injection capacities are not equal. Careful control of a platinum electrodes surface may allow larger charge densities and safe use of smaller electrodes. New electrode materials and geometries should be tested in a consistent manner to allow comparison of potential suitability for neural stimulation.

摘要

目的

神经刺激通常使用相当大的铂电极进行。较小的电极增加了施加的电荷密度,可能会损坏电极。为了安全的神经刺激,需要更深入地了解电荷注入机制。

方法

通过循环伏安法测量电荷注入机制和电荷注入容量。通过在酸性溶液中机械清洁或电位循环来清洁电极。通过氢气吸附或[Formula: see text]的还原来测量有效电极面积。

主要结果

电解质、电极尺寸、抛光方法和氧浓度的变化影响水窗和安全电位窗。电容和法拉第电流有助于电荷注入容量。改变伏安扫描速率(测量时间)、电极尺寸、抛光方法、电位窗口、电解质和氧浓度会影响电荷注入容量和氧化与还原电荷的比例。在酸性溶液中进行的氢气吸附提供了不准确的有效电极面积。具有线性或径向扩散分布的溶液相氧化还原物种的还原可以提供有效电极面积。铂电极的电荷密度(电荷注入容量除以电极面积)取决于电荷注入容量和电极面积测量技术。通过改变循环伏安条件,铂的电荷密度范围为 0.15 至 5.57 mC cm。

意义

铂的安全电位窗、电荷注入机制、电荷注入容量和电荷密度取决于电解质、电极尺寸、氧浓度以及电极抛光方法的差异。氧化和还原电荷注入容量不相等。仔细控制铂电极表面可能允许更大的电荷密度,并安全使用更小的电极。应该以一致的方式测试新的电极材料和几何形状,以便能够比较其用于神经刺激的潜在适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验