Suppr超能文献

通过基于特征的设计软件访问用于 3D 打印的微流控技术。

Accessing microfluidics through feature-based design software for 3D printing.

机构信息

The Bredesen Center for Interdisciplinary Research, The University of Tennessee, Knoxville, TN, United States of America.

The Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America.

出版信息

PLoS One. 2018 Mar 29;13(3):e0192752. doi: 10.1371/journal.pone.0192752. eCollection 2018.

Abstract

Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

摘要

增材制造几十年来一直是产品开发管道的基石,在功能和外观原型的创建中发挥着重要作用。近年来,分布式和开源制造的前景有了巨大的增长。这种增长得益于可打印材料库的扩展、低成本打印机以及致力于平台开发的社区。微流控社区已经接受了这一机会,将 3D 打印集成到用于创建新型流体结构的制造策略套件中。在实验室中实施这些策略的快速周转时间和低成本使得 3D 打印成为传统微纳制造技术的有吸引力的替代方案。在这项工作中,使用混合 3D 打印-软光刻方法生产了多种微流控结构,并展示了其能够利用层流特性实现快速器件制造,同时具有通道尺寸优势。这里概述的制造过程基于使用带有集成切片程序的定制设计软件的实现,该程序取代了不太直观的计算机辅助设计和切片软件工具。通过组装参数化微流控构建块,在程序中设计器件。通过梯度发生器和两个液滴发生器设计展示了 3D 打印设备中的制造过程和流动控制。通过挤出桥结构“跳过”同一平面中的通道,对打印过程进行精确控制,从而能够一步打印 3D 微流控。这种策略被证明可以与传统的纳米制造策略集成,以简化包含纳米级特征和 3D 打印微流控的平台的操作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b4/5875762/5e6657591039/pone.0192752.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验