Center for Visual Science, University of Rochester, Rochester, New York, United States of America.
Flaum Eye Institute, University of Rochester, Rochester, New York, United States of America.
PLoS One. 2018 Mar 29;13(3):e0194947. doi: 10.1371/journal.pone.0194947. eCollection 2018.
Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain.
在这里,我们展示了一种方法的应用,该方法可以通过直接和可重复地观察活体眼睛中的细胞功能来加速新型疗法的开发,从而研究视网膜疾病动物模型中的视力丧失,并评估治疗干预后视网膜功能的时间过程。我们使用高分辨率自适应光学扫描激光检眼镜来成像钙传感器 GCaMP6s 的荧光。在具有光感受器变性(rd10)的小鼠中,我们在视觉反应明显丧失后六周的时间内,测量了在表达红移型通道蛋白 ChrimsonR 的神经节细胞层神经元中恢复的视觉反应。结合荧光钙传感器和通道蛋白,自适应光学允许在活体眼睛中对视网膜神经元进行全光学刺激和记录。由于视网膜是通往中枢神经系统的可进入门户,我们的方法还为剖析大脑中的神经元处理提供了一种新颖的非侵入性方法。