Berruto G, Madan I, Murooka Y, Vanacore G M, Pomarico E, Rajeswari J, Lamb R, Huang P, Kruchkov A J, Togawa Y, LaGrange T, McGrouther D, Rønnow H M, Carbone F
Institute of Physics, LUMES, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
Phys Rev Lett. 2018 Mar 16;120(11):117201. doi: 10.1103/PhysRevLett.120.117201.
We demonstrate that light-induced heat pulses of different duration and energy can write Skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz transmission electron microscopy, we directly resolve the spatiotemporal evolution of the magnetization ensuing optical excitation. The Skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-μs to μs range, depending on the cooling rate of the system.
我们证明,不同持续时间和能量的光致热脉冲能够在FeGe中的广泛温度和磁场范围内写入斯格明子。通过结合相机速率和泵浦-探测低温洛伦兹透射电子显微镜,我们直接解析了光激发后磁化强度的时空演化。结果发现,在激光诱导的退磁过程中,斯格明子晶格保持其结构特性,并且根据系统的冷却速率,其恢复到初始状态发生在亚微秒到微秒的范围内。