Suppr超能文献

液体膜通过肌球蛋白-1 小团队增强货物运输速度。

A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1.

机构信息

Department of Physics, University of California, Merced, California 95343, USA.

Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA.

出版信息

J Chem Phys. 2018 Mar 28;148(12):123318. doi: 10.1063/1.5006806.

Abstract

Kinesin-1 (hereafter referred to as kinesin) is a major microtubule-based motor protein for plus-end-directed intracellular transport in live cells. While the single-molecule functions of kinesin are well characterized, the physiologically relevant transport of membranous cargos by small teams of kinesins remains poorly understood. A key experimental challenge remains in the quantitative control of the number of motors driving transport. Here we utilized "motile fraction" to overcome this challenge and experimentally accessed transport by a single kinesin through the physiologically relevant transport by a small team of kinesins. We used a fluid lipid bilayer to model the cellular membrane in vitro and employed optical trapping to quantify the transport of membrane-enclosed cargos versus traditional membrane-free cargos under identical conditions. We found that coupling motors via a fluid membrane significantly enhances the velocity of cargo transport by small teams of kinesins. Importantly, enclosing a cargo in a fluid lipid membrane did not impact single-kinesin transport, indicating that membrane-dependent velocity enhancement for team-based transport arises from altered interactions between kinesins. Our study demonstrates that membrane-based coupling between motors is a key determinant of kinesin-based transport. Enhanced velocity may be critical for fast delivery of cargos in live cells.

摘要

驱动蛋白-1(以下简称驱动蛋白)是活细胞中正向指向细胞内运输的主要微管动力蛋白。虽然驱动蛋白的单分子功能已经得到很好的描述,但由少量驱动蛋白组成的膜结合货物的生理相关运输仍知之甚少。一个关键的实验挑战仍然是定量控制驱动运输的马达数量。在这里,我们利用“运动分数”来克服这一挑战,并通过实验访问单个驱动蛋白的运输,通过少量驱动蛋白的生理相关运输。我们使用流体脂质双层在体外模拟细胞膜,并采用光阱在相同条件下定量测量膜封闭货物与传统无膜货物的运输。我们发现,通过流体膜将马达耦合在一起,显著提高了小团队驱动蛋白的货物运输速度。重要的是,将货物封闭在流体脂质膜中并不影响单驱动蛋白的运输,这表明团队运输中基于膜的速度增强是由于驱动蛋白之间的相互作用发生改变。我们的研究表明,马达之间基于膜的耦合是驱动蛋白运输的关键决定因素。增强的速度可能对活细胞中货物的快速传递至关重要。

相似文献

1
A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1.
J Chem Phys. 2018 Mar 28;148(12):123318. doi: 10.1063/1.5006806.
2
Cholesterol in the cargo membrane amplifies tau inhibition of kinesin-1-based transport.
Proc Natl Acad Sci U S A. 2023 Jan 17;120(3):e2212507120. doi: 10.1073/pnas.2212507120. Epub 2023 Jan 10.
3
Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7185-E7193. doi: 10.1073/pnas.1611398113. Epub 2016 Nov 1.
5
Multiple kinesins induce tension for smooth cargo transport.
Elife. 2019 Oct 31;8:e50974. doi: 10.7554/eLife.50974.
6
Motor transport of self-assembled cargos in crowded environments.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20814-9. doi: 10.1073/pnas.1209304109. Epub 2012 Dec 3.
7
How molecular motors are arranged on a cargo is important for vesicular transport.
PLoS Comput Biol. 2011 May;7(5):e1002032. doi: 10.1371/journal.pcbi.1002032. Epub 2011 May 5.
8
Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors.
Biophys J. 2019 Mar 19;116(6):1115-1126. doi: 10.1016/j.bpj.2019.01.036. Epub 2019 Feb 5.
9
Kinesin superfamily motor proteins and intracellular transport.
Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96. doi: 10.1038/nrm2774.

引用本文的文献

1
Motor Clustering Enhances Kinesin-driven Vesicle Transport.
bioRxiv. 2024 Oct 27:2024.10.23.619892. doi: 10.1101/2024.10.23.619892.
2
Kinesin-1-transported liposomes prefer to go straight in 3D microtubule intersections by a mechanism shared by other molecular motors.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2407330121. doi: 10.1073/pnas.2407330121. Epub 2024 Jul 9.
3
Phosphatidic acid-dependent recruitment of microtubule motors to spherical supported lipid bilayers for in vitro motility assays.
Cell Rep. 2024 Jun 25;43(6):114252. doi: 10.1016/j.celrep.2024.114252. Epub 2024 May 20.
4
Competition between physical search and a weak-to-strong transition rate-limits kinesin binding times.
PLoS Comput Biol. 2024 May 20;20(5):e1012158. doi: 10.1371/journal.pcbi.1012158. eCollection 2024 May.
5
ADP release can explain spatially-dependent kinesin binding times.
bioRxiv. 2023 Nov 10:2023.11.08.563482. doi: 10.1101/2023.11.08.563482.
6
Vesicles driven by dynein and kinesin exhibit directional reversals without regulators.
Nat Commun. 2023 Nov 20;14(1):7532. doi: 10.1038/s41467-023-42605-8.
7
Logistics of Bone Mineralization in the Chick Embryo Studied by 3D Cryo FIB-SEM Imaging.
Adv Sci (Weinh). 2023 Aug;10(22):e2301231. doi: 10.1002/advs.202301231. Epub 2023 May 19.
8
Cholesterol in the cargo membrane amplifies tau inhibition of kinesin-1-based transport.
Proc Natl Acad Sci U S A. 2023 Jan 17;120(3):e2212507120. doi: 10.1073/pnas.2212507120. Epub 2023 Jan 10.
9
Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors.
PLoS Comput Biol. 2022 Jun 8;18(6):e1010217. doi: 10.1371/journal.pcbi.1010217. eCollection 2022 Jun.
10
Methods to Quantify and Relate Axonal Transport Defects to Changes in C. elegans Behavior.
Methods Mol Biol. 2022;2431:481-497. doi: 10.1007/978-1-0716-1990-2_26.

本文引用的文献

1
Heterogeneity in kinesin function.
Traffic. 2017 Oct;18(10):658-671. doi: 10.1111/tra.12504. Epub 2017 Sep 8.
2
The mitotic kinesin-14 KlpA contains a context-dependent directionality switch.
Nat Commun. 2017 Jan 4;8:13999. doi: 10.1038/ncomms13999.
3
Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7185-E7193. doi: 10.1073/pnas.1611398113. Epub 2016 Nov 1.
4
Cargo rigidity affects the sensitivity of dynein ensembles to individual motor pausing.
Cytoskeleton (Hoboken). 2016 Dec;73(12):693-702. doi: 10.1002/cm.21339. Epub 2016 Nov 8.
5
The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition.
Nat Cell Biol. 2016 Sep;18(9):1018-24. doi: 10.1038/ncb3393. Epub 2016 Jul 25.
6
Quantitative Determination of the Probability of Multiple-Motor Transport in Bead-Based Assays.
Biophys J. 2016 Jun 21;110(12):2720-2728. doi: 10.1016/j.bpj.2016.05.015.
7
Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes.
Cell. 2016 Feb 11;164(4):722-34. doi: 10.1016/j.cell.2015.12.054. Epub 2016 Feb 4.
8
Examining kinesin processivity within a general gating framework.
Elife. 2015 Apr 22;4:e07403. doi: 10.7554/eLife.07403.
9
Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin.
Curr Biol. 2015 Feb 16;25(4):523-9. doi: 10.1016/j.cub.2014.12.008. Epub 2015 Feb 5.
10
A method for multiprotein assembly in cells reveals independent action of kinesins in complex.
J Cell Biol. 2014 Nov 10;207(3):393-406. doi: 10.1083/jcb.201407086. Epub 2014 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验