1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
J Dent Res. 2018 Aug;97(9):969-976. doi: 10.1177/0022034518767120. Epub 2018 Apr 2.
Craniofacial bones, separate from the appendicular skeleton, bear a significant amount of strain and stress generated from mastication-related muscles. Current research on the regeneration of craniofacial bone focuses on the reestablishment of an elaborate vascular network. In this review, current challenges and efforts particularly in advances of scaffold properties and techniques for vascularization remodeling in craniofacial bone tissue engineering will be discussed. A microenvironment of ischemia and hypoxia in the biomaterial core drives propagation and reorganization of endothelial progenitor cells (EPCs) to assemble into a primitive microvascular framework. Co-culture strategies and delivery of vasculogenic molecules enhance EPCs' differentiation and stimulate the host regenerative response to promote vessel sprouting and strength. To optimize structural and vascular integration, well-designed microstructures of scaffolds are biologically considered. Proper porous structures, matrix stiffness, and surface morphology of scaffolds have a profound influence on cell behaviors and thus affect revascularization. In addition, advanced techniques facilitating angiogenesis and vaculogenesis have also been discussed. Oxygen delivery biomaterials, scaffold-free cell sheet techniques, and arteriovenous loop-induced axial vascularization strategies bring us new understanding and powerful strategies to manage revascularization of large craniofacial bone defects. Although promising histological results have been achieved, the efficient perfusion and functionalization of newly formed vessels are still challenging.
颅颌面骨骼与附肢骨骼分离,承受着咀嚼相关肌肉产生的大量张力和压力。目前,颅颌面骨再生的研究集中在重新建立一个精细的血管网络上。在这篇综述中,我们将讨论当前的挑战和努力,特别是在支架性能和血管化重塑技术方面的进展,以促进颅颌面骨组织工程。生物材料核心的缺血缺氧微环境促使内皮祖细胞(EPC)的增殖和重组成原始微血管框架。共培养策略和血管生成分子的递送促进了 EPC 的分化,并刺激宿主的再生反应,促进血管发芽和增强。为了优化结构和血管的整合,支架的微观结构得到了很好的设计。支架的适当多孔结构、基质硬度和表面形态对细胞行为有深远的影响,从而影响再血管化。此外,还讨论了促进血管生成和血管发生的先进技术。氧输送生物材料、无支架细胞片技术和动静脉环诱导的轴向血管化策略为我们提供了新的理解和强大的策略来管理大的颅颌面骨缺损的再血管化。尽管取得了有希望的组织学结果,但新形成的血管的有效灌注和功能化仍然具有挑战性。