Suppr超能文献

将骨源性细胞外基质融入大孔微带支架可加速骨再生。

Incorporating Bone-Derived ECM into Macroporous Microribbon Scaffolds Accelerates Bone Regeneration.

作者信息

Villicana Cassandra, Su Ni, Yang Andrew, Tong Xinming, Lee Hung Pang, Ayushman Manish, Lee Jeehee, Tai Michelle, Kim Tayne, Yang Fan

机构信息

Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.

出版信息

Adv Healthc Mater. 2025 Mar;14(6):e2402138. doi: 10.1002/adhm.202402138. Epub 2025 Jan 31.

Abstract

Tissue-derived extracellular matrix (tdECM) hydrogels serve as effective scaffolds for tissue regeneration by promoting a regenerative immune response. While most tdECM hydrogels are nanoporous and tailored for soft tissue, macroporosity is crucial for bone regeneration. Yet, there's a shortage of macroporous ECM-based hydrogels for this purpose. The study aims to address this gap by developing a co-spinning technique to integrate bone-derived ECM (bECM) into gelatin-based, macroporous microribbon (µRB) scaffolds. The effect of varying doses of bECM on scaffold properties was characterized. In vitro studies revealed 15% bECM as optimal for promoting MSC osteogenesis and macrophage (Mφ) polarization. When implanted in a mouse critical-sized cranial bone defect model, 15% bECM with tricalcium phosphate (TCP) microparticles significantly accelerated bone regeneration and vascularization, filling over 55% of the void by week 2. Increasing bECM to 25% enhanced mesenchymal stem cell (MSC) recruitment and decreased M1 Mφ polarization but reduced overall bone formation and vascularization. The findings demonstrate co-spun gelatin/bECM hydrogels as promising macroporous scaffolds for robust endogenous bone regeneration, without the need for exogenous cells or growth factors. While this study focused on bone regeneration, this platform holds the potential for incorporating various tdECM into macroporous scaffolds for diverse tissue regeneration applications.

摘要

组织衍生的细胞外基质(tdECM)水凝胶通过促进再生免疫反应,作为组织再生的有效支架。虽然大多数tdECM水凝胶是纳米多孔的,专为软组织定制,但大孔隙率对骨再生至关重要。然而,目前缺乏用于此目的的基于大孔ECM的水凝胶。该研究旨在通过开发一种共纺技术来填补这一空白,该技术将骨衍生的ECM(bECM)整合到基于明胶的大孔微带(µRB)支架中。表征了不同剂量bECM对支架性能的影响。体外研究表明,15%的bECM最有利于促进间充质干细胞(MSC)的成骨作用和巨噬细胞(Mφ)极化。当植入小鼠临界尺寸颅骨缺损模型中时,含有磷酸三钙(TCP)微粒的15%bECM显著加速了骨再生和血管生成,到第2周时填充了超过55%的空隙。将bECM增加到25%可增强间充质干细胞(MSC)募集并降低M1 Mφ极化,但会减少整体骨形成和血管生成。这些发现表明,共纺明胶/bECM水凝胶是用于强大内源性骨再生的有前途的大孔支架,无需外源性细胞或生长因子。虽然这项研究专注于骨再生,但该平台有潜力将各种tdECM整合到大孔支架中,用于多种组织再生应用。

相似文献

1
Incorporating Bone-Derived ECM into Macroporous Microribbon Scaffolds Accelerates Bone Regeneration.
Adv Healthc Mater. 2025 Mar;14(6):e2402138. doi: 10.1002/adhm.202402138. Epub 2025 Jan 31.
2
Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration .
Theranostics. 2020 May 15;10(13):6035-6047. doi: 10.7150/thno.41096. eCollection 2020.
3
Aspirin synergizes with mineral particle-coated macroporous scaffolds for bone regeneration through immunomodulation.
Theranostics. 2023 Aug 15;13(13):4512-4525. doi: 10.7150/thno.85946. eCollection 2023.
4
Spatially patterned microribbon-based hydrogels induce zonally-organized cartilage regeneration by stem cells in 3D.
Acta Biomater. 2020 Jan 1;101:196-205. doi: 10.1016/j.actbio.2019.10.025. Epub 2019 Oct 19.
5
Gelatin-Based Microribbon Hydrogels Support Robust MSC Osteogenesis across a Broad Range of Stiffness.
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3454-3463. doi: 10.1021/acsbiomaterials.9b01792. Epub 2020 May 27.
7
Hydroxyapatite-coated gelatin microribbon scaffolds induce rapid endogenous cranial bone regeneration in vivo.
Biomater Adv. 2022 Sep;140:213050. doi: 10.1016/j.bioadv.2022.213050. Epub 2022 Jul 28.
8
Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration.
J Mater Chem B. 2021 Sep 14;9(34):6881-6894. doi: 10.1039/d1tb00895a. Epub 2021 Aug 16.

本文引用的文献

1
Double-Network DNA Macroporous Hydrogel Enables Aptamer-Directed Cell Recruitment to Accelerate Bone Healing.
Adv Sci (Weinh). 2024 Jan;11(1):e2303637. doi: 10.1002/advs.202303637. Epub 2023 Nov 10.
2
Aspirin synergizes with mineral particle-coated macroporous scaffolds for bone regeneration through immunomodulation.
Theranostics. 2023 Aug 15;13(13):4512-4525. doi: 10.7150/thno.85946. eCollection 2023.
3
Intravascularly infused extracellular matrix as a biomaterial for targeting and treating inflamed tissues.
Nat Biomed Eng. 2023 Feb;7(2):94-109. doi: 10.1038/s41551-022-00964-5. Epub 2022 Dec 29.
4
Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering.
Int J Biol Macromol. 2022 Oct 1;218:9-21. doi: 10.1016/j.ijbiomac.2022.07.040. Epub 2022 Jul 12.
5
An organ-derived extracellular matrix triggers in situ kidney regeneration in a preclinical model.
NPJ Regen Med. 2022 Feb 28;7(1):18. doi: 10.1038/s41536-022-00213-y.
6
Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook.
J Funct Biomater. 2021 Dec 21;13(1):1. doi: 10.3390/jfb13010001.
8
Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering.
Bioact Mater. 2021 Sep 23;10:15-31. doi: 10.1016/j.bioactmat.2021.09.014. eCollection 2022 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验