Suppr超能文献

基于自适应区域生长和监督边缘的变形模型的自动三维乳腺超声的肿块分割。

Mass Segmentation in Automated 3-D Breast Ultrasound Using Adaptive Region Growing and Supervised Edge-Based Deformable Model.

出版信息

IEEE Trans Med Imaging. 2018 Apr;37(4):918-928. doi: 10.1109/TMI.2017.2787685.

Abstract

Automated 3-D breast ultrasound has been proposed as a complementary modality to mammography for early detection of breast cancers. To facilitate the interpretation of these images, computer aided detection systems are being developed in which mass segmentation is an essential component for feature extraction and temporal comparisons. However, automated segmentation of masses is challenging because of the large variety in shape, size, and texture of these 3-D objects. In this paper, the authors aim to develop a computerized segmentation system, which uses a seed position as the only priori of the problem. A two-stage segmentation approach has been proposed incorporating shape information of training masses. At the first stage, a new adaptive region growing algorithm is used to give a rough estimation of the mass boundary. The similarity threshold of the proposed algorithm is determined using a Gaussian mixture model based on the volume and circularity of the training masses. In the second stage, a novel geometric edge-based deformable model is introduced using the result of the first stage as the initial contour. In a data set of 50 masses, including 38 malignant and 12 benign lesions, the proposed segmentation method achieved a mean Dice of 0.74 ± 0.19 which outperformed the adaptive region growing with a mean Dice of 0.65 ± 0.2 (p-value < 0.02). Moreover, the resulting mean Dice was significantly (p-value < 0.001) better than that of the distance regularized level set evolution method (0.52 ± 0.27). The supervised method presented in this paper achieved accurate mass segmentation results in terms of Dice measure. The suggested segmentation method can be utilized in two aspects: 1) to automatically measure the change in volume of breast lesions over time and 2) to extract features for a computer aided detection or diagnosis system.

摘要

自动式三维乳腺超声已经被提议作为乳腺 X 线摄影术的补充模式,用于早期发现乳腺癌。为了便于解释这些图像,正在开发计算机辅助检测系统,其中肿块分割是特征提取和时间比较的基本组成部分。然而,由于这些 3D 物体的形状、大小和纹理的巨大差异,自动分割肿块具有挑战性。在本文中,作者旨在开发一种计算机分割系统,该系统仅使用种子位置作为问题的先验。已经提出了一种两阶段分割方法,该方法结合了训练肿块的形状信息。在第一阶段,使用新的自适应区域增长算法对肿块边界进行粗略估计。所提出算法的相似性阈值是基于训练肿块的体积和圆度的基于高斯混合模型来确定的。在第二阶段,引入了一种新的基于几何边缘的变形模型,该模型使用第一阶段的结果作为初始轮廓。在包括 38 个恶性和 12 个良性病变的 50 个肿块的数据集上,所提出的分割方法的平均 Dice 为 0.74±0.19,优于自适应区域增长的平均 Dice(0.65±0.2)(p 值<0.02)。此外,所得的平均 Dice 值明显优于距离正则化水平集演化方法(0.52±0.27)(p 值<0.001)。本文提出的监督方法在 Dice 测量方面实现了肿块分割的准确结果。所提出的分割方法可用于两个方面:1)自动测量随时间推移的乳腺病变体积的变化,2)提取计算机辅助检测或诊断系统的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验