Suppr超能文献

基于结构相似性的利用 MRI 信息的核方法从动态 PET 数据直接进行 Patlak 重建。

Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity.

出版信息

IEEE Trans Med Imaging. 2018 Apr;37(4):955-965. doi: 10.1109/TMI.2017.2776324.

Abstract

Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.

摘要

正电子发射断层扫描(PET)是一种广泛应用于肿瘤学、心脏病学和神经科学的功能成像方式。与磁共振成像(MRI)等解剖成像方式相比,它具有较高的灵敏度,但空间分辨率相对较差。随着最近的 PET/MR 联合系统的发展,我们可以通过将 MR 信息纳入图像重建来提高 PET 图像质量。此前,基于 PET 时间或 MRI 信息,核学习已经成功地应用于静态和动态 PET 图像重建中。在这里,我们自适应地结合了 PET 时间和 MRI 信息,以提高直接 Patlak 重建的质量。我们研究了不同的方法来在核学习中结合 PET 和 MRI 信息,以解决 MRI 和 PET 信号之间潜在失配的问题。使用计算机模拟和在同时采集的 PET/MR 扫描仪上获得的混合真实患者数据来评估所提出的方法。结果表明,基于结构相似性指数自适应地结合 PET 时间信息和 MRI 空间信息的方法在降噪和分辨率提高方面表现最佳。

相似文献

3
MR-guided joint reconstruction of activity and attenuation in brain PET-MR.MR 引导的脑 PET-MR 活动和衰减联合重建。
Neuroimage. 2017 Nov 15;162:276-288. doi: 10.1016/j.neuroimage.2017.09.006. Epub 2017 Sep 14.
10
Fat-constrained 18F-FDG PET reconstruction in hybrid PET/MR imaging.PET/MR 混合成像中脂肪受限的 18F-FDG PET 重建
J Nucl Med. 2014 Oct;55(10):1643-9. doi: 10.2967/jnumed.114.139758. Epub 2014 Aug 28.

引用本文的文献

1
PET Mapping of Receptor Occupancy Using Joint Direct Parametric Reconstruction.使用联合直接参数重建的受体占有率的PET映射
IEEE Trans Biomed Eng. 2025 Mar;72(3):1057-1066. doi: 10.1109/TBME.2024.3486191. Epub 2025 Feb 20.
8
Simultaneous Denoising of Dynamic PET Images Based on Deep Image Prior.基于深度图像先验的动态 PET 图像同步去噪。
J Digit Imaging. 2022 Aug;35(4):834-845. doi: 10.1007/s10278-022-00606-x. Epub 2022 Mar 3.

本文引用的文献

4
Anatomically-aided PET reconstruction using the kernel method.使用核方法的解剖学辅助PET重建。
Phys Med Biol. 2016 Sep 21;61(18):6668-6683. doi: 10.1088/0031-9155/61/18/6668. Epub 2016 Aug 19.
5
Sparsity-constrained PET image reconstruction with learned dictionaries.基于学习字典的稀疏约束PET图像重建
Phys Med Biol. 2016 Sep 7;61(17):6347-68. doi: 10.1088/0031-9155/61/17/6347. Epub 2016 Aug 5.
8
PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets.基于并行水平集的解剖 MRI 先验的 PET 重建。
IEEE Trans Med Imaging. 2016 Sep;35(9):2189-2199. doi: 10.1109/TMI.2016.2549601. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验