Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Cell Rep. 2018 Apr 3;23(1):172-180.e3. doi: 10.1016/j.celrep.2018.03.046.
Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.
精准肿瘤学利用基因组证据来匹配接受治疗的患者,但往往无法识别所有可能有反应的患者。这些“隐藏的应答者”的转录组可能揭示出有反应的分子状态。我们描述并评估了一种机器学习方法来对肿瘤中的异常通路活性进行分类,这可能有助于识别隐藏的应答者。该算法整合了来自癌症基因组图谱(TCGA) PanCanAtlas 项目中 33 种不同癌症类型的 RNA-seq、拷贝数和突变数据,以预测肿瘤中的异常分子状态。该方法应用于 Ras 通路,可在癌症类型中检测到 Ras 激活,并识别出表型相似的变体。该模型在人类肿瘤上进行训练,可预测野生型 Ras 细胞系对 MEK 抑制剂的反应。我们还提供的数据表明,Ras 通路中的多个打击会增加 Ras 活性。转录组在精准肿瘤学中的应用尚未得到充分利用,与机器学习相结合,可以帮助识别隐藏的应答者。