Arava Hanu, Derlet Peter M, Vijayakumar Jaianth, Cui Jizhai, Bingham Nicholas S, Kleibert Armin, Heyderman Laura J
Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland. Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
Nanotechnology. 2018 Jun 29;29(26):265205. doi: 10.1088/1361-6528/aabbc3. Epub 2018 Apr 5.
Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
纳米磁体是传统计算技术一种很有前景的低功耗替代方案。然而,到目前为止,由于缺乏可靠性,纳米磁体在逻辑门中的成功应用受到了阻碍。在此,我们提出一种新颖的设计,将偶极耦合纳米磁体排列在正方形晶格上,以(i)支持信息传输,以及(ii)执行逻辑运算。我们引入一种热协议,利用热激活纳米磁体作为执行计算的手段。在该方案中,纳米磁体由全局磁场初始化,并在通过电阻加热器升高温度时进行热弛豫。我们展示了在多达19个方环链中实现无差错信息传输,并且在超过2000个逻辑门的成功门操作中显示出约94%的高可靠性水平。最后,我们展示了一个功能完备的原型与非/或非逻辑门,可用于实现高级逻辑运算。在此,我们通过热平均输出的模拟来支持我们的实验,并确定最佳门参数。我们的方法为长期以来关于纳米磁体用于计算时可靠性的问题提供了一条新途径。