Suppr超能文献

机器学习驱动的成像数据用于乳腺癌放疗中肺毒性的早期预测。

Machine learning-driven imaging data for early prediction of lung toxicity in breast cancer radiotherapy.

作者信息

Ungvári Tamás, Szabó Döme, Győrfi András, Dankovics Zsófia, Kiss Balázs, Olajos Judit, Tőkési Károly

机构信息

Markusovszky University Teaching Hospital, Markusovszky str. 5, Szombathely, 9700, Hungary.

Miskolci SZC Bláthy Ottó Villamosipari Technikum, Soltész Nagy Kálmán str 7, Miskolc, 3527, Hungary.

出版信息

Sci Rep. 2025 May 27;15(1):18473. doi: 10.1038/s41598-025-02617-4.

Abstract

One possible adverse effect of breast irradiation is the development of pulmonary fibrosis. The aim of this study was to determine whether planning CT scans can predict which patients are more likely to develop lung lesions after treatment. A retrospective analysis of 242 patient records was performed using different machine learning models. These models showed a remarkable correlation between the occurrence of fibrosis and the hounsfield units of lungs in CT data. Three different classification methods (Tree, Kernel-based, k-Nearest Neighbors) showed predictive values above 60%. The human predictive factor (HPF), a mathematical predictive model, further strengthened the association between lung hounsfield unit (HU) metrics and radiation-induced lung injury (RILI). These approaches optimize radiation treatment plans to preserve lung health. Machine learning models and HPF can also provide effective diagnostic and therapeutic support for other diseases.

摘要

乳房照射的一个可能的副作用是肺纤维化的发展。本研究的目的是确定计划CT扫描是否能够预测哪些患者在治疗后更有可能发生肺部病变。使用不同的机器学习模型对242例患者记录进行了回顾性分析。这些模型显示纤维化的发生与CT数据中肺部的亨氏单位之间存在显著相关性。三种不同的分类方法(决策树、基于核的方法、k近邻算法)显示预测值高于60%。人类预测因子(HPF),一种数学预测模型,进一步加强了肺部亨氏单位(HU)指标与放射性肺损伤(RILI)之间的关联。这些方法优化了放射治疗计划以保护肺部健康。机器学习模型和HPF也可以为其他疾病提供有效的诊断和治疗支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec25/12117034/0ebe097ed991/41598_2025_2617_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验