Suppr超能文献

具有部分恒定风险率的生存分布的非参数变点估计

Nonparametric change point estimation for survival distributions with a partially constant hazard rate.

作者信息

Brazzale Alessandra R, Küchenhoff Helmut, Krügel Stefanie, Schiergens Tobias S, Trentzsch Heiko, Hartl Wolfgang

机构信息

Dipartimento di Scienze Statistiche, Università degli Studi di Padova, Padova, Italy.

Statistical Consulting Unit, Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Lifetime Data Anal. 2019 Apr;25(2):301-321. doi: 10.1007/s10985-018-9431-x. Epub 2018 Apr 5.

Abstract

We present a new method for estimating a change point in the hazard function of a survival distribution assuming a constant hazard rate after the change point and a decreasing hazard rate before the change point. Our method is based on fitting a stump regression to p values for testing hazard rates in small time intervals. We present three real data examples describing survival patterns of severely ill patients, whose excess mortality rates are known to persist far beyond hospital discharge. For designing survival studies in these patients and for the definition of hospital performance metrics (e.g. mortality), it is essential to define adequate and objective end points. The reliable estimation of a change point will help researchers to identify such end points. By precisely knowing this change point, clinicians can distinguish between the acute phase with high hazard (time elapsed after admission and before the change point was reached), and the chronic phase (time elapsed after the change point) in which hazard is fairly constant. We show in an extensive simulation study that maximum likelihood estimation is not robust in this setting, and we evaluate our new estimation strategy including bootstrap confidence intervals and finite sample bias correction.

摘要

我们提出了一种新方法,用于估计生存分布的风险函数中的变化点,假设变化点之后风险率恒定,变化点之前风险率递减。我们的方法基于对小时间间隔内风险率检验的p值进行树桩回归拟合。我们给出了三个真实数据示例,描述了重症患者的生存模式,已知这些患者的超额死亡率在出院后仍会持续很长时间。对于设计这些患者的生存研究以及定义医院绩效指标(如死亡率)而言,定义适当且客观的终点至关重要。可靠地估计变化点将有助于研究人员识别此类终点。通过精确了解这个变化点,临床医生可以区分高风险的急性期(入院后到达到变化点之前经过的时间)和风险相当恒定的慢性期(变化点之后经过的时间)。我们在广泛的模拟研究中表明,在这种情况下最大似然估计并不稳健,并且我们评估了我们的新估计策略,包括自助置信区间和有限样本偏差校正。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验