Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany; Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany.
Metab Eng. 2018 May;47:423-433. doi: 10.1016/j.ymben.2018.04.003. Epub 2018 Apr 4.
Organisms are either heterotrophic or autotrophic, meaning that they cover their carbon requirements by assimilating organic compounds or by fixing inorganic carbon dioxide (CO). The conversion of a heterotrophic organism into an autotrophic one by metabolic engineering is a long-standing goal in synthetic biology and biotechnology, because it ultimately allows for the production of value-added compounds from CO. The heterotrophic Alphaproteobacterium Methylobacterium extorquens AM1 is a platform organism for a future C1-based bioeconomy. Here we show that M. extorquens AM1 provides unique advantages for establishing synthetic autotrophy, because energy metabolism and biomass formation can be effectively separated from each other in the organism. We designed and realized an engineered strain of M. extorquens AM1 that can use the C1 compound methanol for energy acquisition and forms biomass from CO by implementation of a heterologous Calvin-Benson-Bassham (CBB) cycle. We demonstrate that the heterologous CBB cycle is active, confers a distinct phenotype, and strongly increases viability of the engineered strain. Metabolic C-tracer analysis demonstrates the functional operation of the heterologous CBB cycle in M. extorquens AM1 and comparative proteomics of the engineered strain show that the host cell reacts to the implementation of the CBB cycle in a plastic way. While the heterologous CBB cycle is not able to support full autotrophic growth of M. extorquens AM1, our study represents a further advancement in the design and realization of synthetic autotrophic organisms.
生物要么是异养的,要么是自养的,这意味着它们通过同化有机化合物或固定无机二氧化碳 (CO) 来满足碳需求。通过代谢工程将异养生物转化为自养生物是合成生物学和生物技术的长期目标,因为它最终允许从 CO 生产增值化合物。异养α变形菌 Methylobacterium extorquens AM1 是未来基于 C1 的生物经济的平台生物。在这里,我们表明 M. extorquens AM1 为建立合成自养提供了独特的优势,因为在该生物体中可以有效地将能量代谢和生物量形成彼此分离。我们设计并实现了一株能够利用 C1 化合物甲醇获取能量并通过实施异源卡尔文-本森-巴斯汉姆(CBB)循环从 CO 形成生物量的工程菌株 M. extorquens AM1。我们证明了异源 CBB 循环是活跃的,赋予了明显的表型,并大大提高了工程菌株的生存能力。代谢 C 示踪分析证明了异源 CBB 循环在 M. extorquens AM1 中的功能运作,并且工程菌株的比较蛋白质组学表明宿主细胞以可塑的方式对 CBB 循环的实施做出反应。虽然异源 CBB 循环不能支持 M. extorquens AM1 的完全自养生长,但我们的研究代表了在设计和实现合成自养生物方面的进一步进展。