Yang Jianxin, Pan Tianle, Liu Tong, Mao Chuanbin, Ho Ho-Pui, Yuan Wu
Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China.
Adv Mater. 2025 Jan;37(2):e2400018. doi: 10.1002/adma.202400018. Epub 2024 Sep 9.
Nanopore is commonly used for high-resolution, label-free sensing, and analysis of single molecules. However, controlling the speed and trajectory of molecular translocation in nanopores remains challenging, hampering sensing accuracy. Here, the study proposes a nanopore-in-a-tube (NIAT) device that enables decoupling of the current signal detection from molecular translocation and provides precise angular inertia-kinetic translocation of single molecules through a nanopore, thus ensuring stable signal readout with high signal-to-noise ratio (SNR). Specifically, the funnel-shaped silicon nanopore, fabricated at a 10-nm resolution, is placed into a centrifugal tube. A light-induced photovoltaic effect is utilized to achieve a counter-balanced state of electrokinetic effects in the nanopore. By controlling the inertial angle and centrifugation speed, the angular inertial force is harnessed effectively for regulating the translocation process with high precision. Consequently, the speed and trajectory of the molecules are able to be adjusted in and around the nanopore, enabling controllable and high SNR current signals. Numerical simulation reveals the decisive role of inertial angle in achieving uniform translocation trajectories and enhancing analyte-nanopore interactions. The performance of the device is validated by discriminating rigid Au nanoparticles with a 1.6-nm size difference and differentiating a 1.3-nm size difference and subtle stiffness variations in flexible polyethylene glycol molecules.
纳米孔通常用于单分子的高分辨率、无标记传感和分析。然而,控制纳米孔中分子转位的速度和轨迹仍然具有挑战性,这阻碍了传感精度。在此,该研究提出了一种管中纳米孔(NIAT)装置,该装置能够将电流信号检测与分子转位解耦,并通过纳米孔提供单分子精确的角惯性动力学转位,从而确保以高信噪比(SNR)实现稳定的信号读出。具体而言,以10纳米分辨率制造的漏斗形硅纳米孔被放置在离心管中。利用光致光伏效应在纳米孔中实现电动效应的平衡状态。通过控制惯性角和离心速度,有效利用角惯性力高精度地调节转位过程。因此,分子的速度和轨迹能够在纳米孔内部及其周围进行调整,从而实现可控且具有高SNR的电流信号。数值模拟揭示了惯性角在实现均匀转位轨迹和增强分析物与纳米孔相互作用方面的决定性作用。通过区分尺寸相差1.6纳米的刚性金纳米颗粒以及区分尺寸相差1.3纳米且柔性聚乙二醇分子存在细微刚度变化的情况,验证了该装置的性能。