Johns Hopkins University, Baltimore, United States.
Elife. 2018 Apr 10;7:e29053. doi: 10.7554/eLife.29053.
Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat's inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal's instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task.
在自然环境中进行空间定位的关键是对物体的方向和距离进行动态表示。尽管 3D 空间定位对于解析环境中的物体和引导运动非常重要,但大多数神经生理学对感觉映射的研究都仅限于对受约束的受试者进行的二维、人工刺激的研究。在这里,我们首次表明,自由飞行的回声定位蝙蝠的中脑上丘(SC)中的感觉神经元编码 3D 自我中心空间,并且蝙蝠对物理环境中物体的检查可以锐化单个神经元的调谐,并将峰值响应转移到代表更近的距离。这些发现来自于自由飞行蝙蝠的无线神经记录,结合计算动物即时刺激空间的回声模型。我们的研究揭示了在从事真实世界导航任务的自由移动哺乳动物中动态的 3D 空间编码。