a Department of Cardiology , Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences ; Shanghai , China.
b Longju Medical Research Center ; Key Laboratory of Basic Pharmacology of Ministry of Education ; Zunyi Medical University ; Zunyi , China.
Autophagy. 2018;14(5):825-844. doi: 10.1080/15548627.2017.1389357. Epub 2018 Apr 10.
Post-translational modifications of autophagy-related (ATG) genes are necessary to modulate their functions. However, ATG protein methylation and its physiological role have not yet been elucidated. The methylation of non-histone proteins by SETD7, a SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. Here we present evidence that the precise activity of ATG16L1 protein in hypoxia/reoxygenation (H/R)-treated cardiomyocytes is regulated by a balanced methylation and phosphorylation switch. We first show that H/R promotes autophagy and decreases SETD7 expression, whereas autophagy inhibition by 3-MA increases SETD7 level in cardiomyocytes, implying a tight correlation between autophagy and SETD7. Then we demonstrate that SETD7 methylates ATG16L1 at lysine 151 while KDM1A/LSD1 (lysine demethylase 1A) removes this methyl mark. Furthermore, we validate that this methylation at lysine 151 impairs the binding of ATG16L1 to the ATG12-ATG5 conjugate, leading to inhibition of autophagy and increased apoptosis in H/R-treated cardiomyocytes. However, the cardiomyocytes with shRNA-knocked down SETD7 or inhibition of SETD7 activity by a small molecule chemical, display increased autophagy and decreased apoptosis following H/R treatment. Additionally, methylation at lysine 151 inhibits phosphorylation of ATG16L1 at S139 by CSNK2 which was previously shown to be critical for autophagy maintenance, and vice versa. Together, our findings define a novel modification of ATG16L1 and highlight the importance of an ATG16L1 phosphorylation-methylation switch in determining the fate of H/R-treated cardiomyocytes.
自噬相关 (ATG) 基因的翻译后修饰对于调节其功能是必要的。然而,ATG 蛋白甲基化及其生理作用尚未阐明。SET 结构域含有赖氨酸甲基转移酶 SETD7 对非组蛋白蛋白的甲基化是一种新的调节机制,可以控制细胞蛋白功能以响应各种细胞应激。在这里,我们提供的证据表明,在缺氧/复氧 (H/R) 处理的心肌细胞中,ATG16L1 蛋白的精确活性受到甲基化和磷酸化平衡开关的调节。我们首先表明,H/R 促进自噬并降低 SETD7 的表达,而 3-MA 抑制自噬会增加心肌细胞中的 SETD7 水平,这表明自噬和 SETD7 之间存在紧密的相关性。然后,我们证明 SETD7 在赖氨酸 151 处甲基化 ATG16L1,而 KDM1A/LSD1(赖氨酸去甲基酶 1A)去除该甲基标记。此外,我们验证了赖氨酸 151 处的这种甲基化会损害 ATG16L1 与 ATG12-ATG5 缀合物的结合,导致自噬抑制和 H/R 处理的心肌细胞中凋亡增加。然而,用 shRNA 敲低 SETD7 的心肌细胞或通过小分子化学物质抑制 SETD7 活性,会导致 H/R 处理后自噬增加和凋亡减少。此外,赖氨酸 151 处的甲基化抑制了先前显示对自噬维持至关重要的 CSNK2 对 ATG16L1 的 S139 磷酸化,反之亦然。总之,我们的研究结果定义了 ATG16L1 的一种新修饰,并强调了 ATG16L1 磷酸化-甲基化开关在决定 H/R 处理的心肌细胞命运中的重要性。