1 Department of Applied Statistics, Johannes Kepler University, Linz, Austria.
2 Kavli Institute for Theoretical Physics, UC Santa Barbara, Santa Barbara, USA.
Stat Methods Med Res. 2019 Aug;28(8):2292-2304. doi: 10.1177/0962280218768326. Epub 2018 Apr 11.
Global hypothesis tests are a useful tool in the context of clinical trials, genetic studies, or meta-analyses, when researchers are not interested in testing individual hypotheses, but in testing whether none of the hypotheses is false. There are several possibilities how to test the global null hypothesis when the individual null hypotheses are independent. If it is assumed that many of the individual null hypotheses are false, combination tests have been recommended to maximize power. If, however, it is assumed that only one or a few null hypotheses are false, global tests based on individual test statistics are more powerful (e.g. Bonferroni or Simes test). However, usually there is no a priori knowledge on the number of false individual null hypotheses. We therefore propose an omnibus test based on cumulative sums of the transformed p-values. We show that this test yields an impressive overall performance. The proposed method is implemented in an R-package called .
当研究人员对检验个别假设不感兴趣,而对检验没有任何假设是错误的感兴趣时,全局假设检验在临床试验、遗传研究或荟萃分析的背景下是一种有用的工具。当个别零假设是独立的时,有几种检验全局零假设的可能性。如果假设许多个别零假设是错误的,那么为了最大化功效,已经推荐了组合检验。然而,如果假设只有一个或几个零假设是错误的,那么基于个别检验统计量的全局检验更有效(例如 Bonferroni 或 Simes 检验)。然而,通常没有关于错误的个别零假设数量的先验知识。因此,我们提出了一种基于转换后 p 值的累积和的综合检验。我们表明,这种检验产生了令人印象深刻的整体性能。所提出的方法在一个名为 的 R 包中实现。