Sturm Gunnar, Richter Katrin, Doetsch Andreas, Heide Heinrich, Louro Ricardo O, Gescher Johannes
Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany.
Department of Microbiology of Natural and Technical Interfaces, Institute of Functional Interfaces, Karlsruhe Institute of Technology (CN), Eggenstein-Leopoldshafen, Germany.
ISME J. 2015 Aug;9(8):1802-11. doi: 10.1038/ismej.2014.264. Epub 2015 Jan 30.
Microorganisms show an astonishing versatility in energy metabolism. They can use a variety of different catabolic electron acceptors, but they use them according to a thermodynamic hierarchy, which is determined by the redox potential of the available electron acceptors. This hierarchy is reflected by a regulatory machinery that leads to the production of respiratory chains in dependence of the availability of the corresponding electron acceptors. In this study, we showed that the γ-proteobacterium Shewanella oneidensis produces several functional electron transfer chains simultaneously. Furthermore, these chains are interconnected, most likely with the aid of c-type cytochromes. The cytochrome pool of a single S. oneidensis cell consists of ca. 700 000 hemes, which are reduced in the absence on an electron acceptor, but can be reoxidized in the presence of a variety of electron acceptors, irrespective of prior growth conditions. The small tetraheme cytochrome (STC) and the soluble heme and flavin containing fumarate reductase FccA have overlapping activity and appear to be important for this electron transfer network. Double deletion mutants showed either delayed growth or no growth with ferric iron, nitrate, dimethyl sulfoxide or fumarate as electron acceptor. We propose that an electron transfer machinery that is produced irrespective of a thermodynamic hierarchy not only enables the organism to quickly release catabolic electrons to a variety of environmental electron acceptors, but also offers a fitness benefit in redox-stratified environments.
微生物在能量代谢方面展现出惊人的多样性。它们可以利用多种不同的分解代谢电子受体,但会根据热力学层级来使用这些受体,而热力学层级由可用电子受体的氧化还原电位决定。这种层级关系通过一种调节机制得以体现,该机制会根据相应电子受体的可用性导致呼吸链的产生。在本研究中,我们表明γ-变形菌希瓦氏菌能同时产生几种功能性电子传递链。此外,这些链相互连接,很可能借助c型细胞色素。单个希瓦氏菌细胞的细胞色素库约由70万个血红素组成,在没有电子受体时它们会被还原,但在存在多种电子受体时可被重新氧化,与之前的生长条件无关。小四血红素细胞色素(STC)以及含血红素和黄素的可溶性延胡索酸还原酶FccA具有重叠活性,且似乎对这个电子传递网络很重要。双缺失突变体在以三价铁、硝酸盐、二甲基亚砜或延胡索酸作为电子受体时,要么生长延迟,要么不生长。我们提出,一种不依赖热力学层级产生的电子传递机制不仅能使生物体迅速将分解代谢电子释放给多种环境电子受体,还能在氧化还原分层环境中提供适应性优势。