Krauss Patrick, Schilling Achim, Bauer Judith, Tziridis Konstantin, Metzner Claus, Schulze Holger, Traxdorf Maximilian
Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
Front Hum Neurosci. 2018 Mar 27;12:121. doi: 10.3389/fnhum.2018.00121. eCollection 2018.
Classic visual sleep stage scoring is based on electroencephalogram (EEG) frequency band analysis of 30 s epochs and is commonly performed by highly trained medical sleep specialists using additional information from submental EMG and eye movements electrooculogram (EOG). In this study, we provide the proof-of-principle in 40 subjects that sleep stages can be consistently differentiated solely on the basis of spatial 3-channel EEG patterns based on root-mean-square (RMS) amplitudes. The polysomnographic 3-channel EEG data are pre-processed by RMS averaging over intervals of 30 s leading to spatial cortical activity patterns represented by 3-dimensional vectors. These patterns are visualized using multidimensional scaling (MDS), allowing a comparison of the spatial cortical activity patterns with the conventional visual sleep scoring system according to the American Academy of Sleep Medicine (AASM). Spatial cortical activity patterns based on RMS amplitudes naturally divide into different clusters that correspond to visually scored sleep stages. Furthermore, these clusters are reproducible between different subjects. Especially the cluster associated with the REM sleep stage seems to be very different from the one associated with the wake state. This study provides a proof-of-principle that it is possible to separate sleep stages solely by analyzing spatially distributed EEG RMS amplitudes reflecting cortical activity and without classical EEG feature extractions like power spectrum analysis.
经典的视觉睡眠阶段评分基于对30秒时间段的脑电图(EEG)频段分析,通常由训练有素的医学睡眠专家使用来自颏下肌电图(EMG)和眼动电图(EOG)的额外信息来进行。在本研究中,我们在40名受试者中提供了原理证明,即仅基于基于均方根(RMS)振幅的空间三通道脑电图模式就可以持续区分睡眠阶段。多导睡眠图的三通道脑电图数据通过在30秒的时间间隔内进行RMS平均进行预处理,从而得到由三维向量表示的空间皮质活动模式。使用多维缩放(MDS)对这些模式进行可视化,从而可以根据美国睡眠医学学会(AASM)将空间皮质活动模式与传统的视觉睡眠评分系统进行比较。基于RMS振幅的空间皮质活动模式自然地分为不同的簇,这些簇对应于视觉评分的睡眠阶段。此外,这些簇在不同受试者之间是可重复的。特别是与快速眼动(REM)睡眠阶段相关的簇似乎与与清醒状态相关的簇非常不同。本研究提供了一个原理证明,即仅通过分析反映皮质活动的空间分布脑电图RMS振幅,而无需像功率谱分析这样的经典脑电图特征提取,就有可能区分睡眠阶段。