Suppr超能文献

基于机器学习,利用沿皮质脊髓束的扩散磁共振成像指标预测胶质瘤患者的运动状态。

Machine learning-based prediction of motor status in glioma patients using diffusion MRI metrics along the corticospinal tract.

作者信息

Shams Boshra, Wang Ziqian, Roine Timo, Aydogan Dogu Baran, Vajkoczy Peter, Lippert Christoph, Picht Thomas, Fekonja Lucius S

机构信息

Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.

出版信息

Brain Commun. 2022 May 27;4(3):fcac141. doi: 10.1093/braincomms/fcac141. eCollection 2022.

Abstract

Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal detailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the clinical utility of diffusion MRI metrics along the corticospinal tract, investigating whether motor glioma patients can be classified with respect to their motor status. We retrospectively included 116 brain tumour patients suffering from either left or right supratentorial, unilateral World Health Organization Grades II, III and IV gliomas with a mean age of 53.51 ± 16.32 years. Around 37% of patients presented with preoperative motor function deficits according to the Medical Research Council scale. At group level comparison, the highest non-overlapping diffusion MRI differences were detected in the superior portion of the tracts' profiles. Fractional anisotropy and fibre density decrease, apparent diffusion coefficient axial diffusivity and radial diffusivity increase. To predict motor deficits, we developed a method based on a support vector machine using histogram-based features of diffusion MRI tract profiles (e.g. mean, standard deviation, kurtosis and skewness), following a recursive feature elimination method. Our model achieved high performance (74% sensitivity, 75% specificity, 74% overall accuracy and 77% area under the curve). We found that apparent diffusion coefficient, fractional anisotropy and radial diffusivity contributed more than other features to the model. Incorporating the patient demographics and clinical features such as age, tumour World Health Organization grade, tumour location, gender and resting motor threshold did not affect the model's performance, revealing that these features were not as effective as microstructural measures. These results shed light on the potential patterns of tumour-related microstructural white matter changes in the prediction of functional deficits.

摘要

长束统计分析能够利用各种扩散磁共振成像指标对白质进行特征描述。这些扩散模型揭示了白质微观结构随发育、病理和功能变化的详细见解。在此,我们旨在评估沿皮质脊髓束的扩散磁共振成像指标的临床效用,研究运动性胶质瘤患者是否能够根据其运动状态进行分类。我们回顾性纳入了116例脑肿瘤患者,这些患者患有左侧或右侧幕上单侧世界卫生组织二级、三级和四级胶质瘤,平均年龄为53.51±16.32岁。根据医学研究委员会量表,约37%的患者术前存在运动功能缺陷。在组间水平比较中,在束轮廓的上部检测到最高的非重叠扩散磁共振成像差异。分数各向异性和纤维密度降低,表观扩散系数、轴向扩散率和径向扩散率增加。为了预测运动缺陷,我们开发了一种基于支持向量机的方法,该方法使用扩散磁共振成像束轮廓的基于直方图的特征(如均值、标准差、峰度和偏度),并采用递归特征消除方法。我们的模型具有较高的性能(灵敏度74%、特异性75%、总体准确率74%和曲线下面积77%)。我们发现表观扩散系数、分数各向异性和径向扩散率对模型的贡献比其他特征更大。纳入患者人口统计学和临床特征(如年龄、肿瘤世界卫生组织分级、肿瘤位置、性别和静息运动阈值)并不影响模型的性能,这表明这些特征不如微观结构测量有效。这些结果揭示了肿瘤相关白质微观结构变化在功能缺陷预测中的潜在模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4f5/9175193/5c4d2a22d019/fcac141ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验