IEEE Trans Neural Syst Rehabil Eng. 2018 Apr;26(4):729-739. doi: 10.1109/TNSRE.2018.2797547.
Electroencephalography (EEG) has become increasingly valuable outside of its traditional use in neurology. EEG is now used for neuropsychiatric diagnosis, neurological evaluation of traumatic brain injury, neurotherapy, gaming, neurofeedback, mindfulness, and cognitive enhancement training. The trend to increase the number of EEG electrodes, the development of novel analytical methods, and the availability of large data sets has created a data analysis challenge to find the "signal of interest" that conveys the most information about ongoing cognitive effort. Accordingly, we compare three common types of neural synchrony measures that are applied to EEG-power analysis, phase locking, and phase-amplitude coupling to assess which analytical measure provides the best separation between EEG signals that were recorded, while healthy subjects performed eight cognitive tasks-Hopkins Verbal Learning Test and its delayed version, Stroop Test, Symbol Digit Modality Test, Controlled Oral Word Association Test, Trail Marking Test, Digit Span Test, and Benton Visual Retention Test. We find that of the three analytical methods, phase-amplitude coupling, specifically theta (4-7 Hz)-high gamma (70-90 Hz) obtained from frontal and parietal EEG electrodes provides both the largest separation between the EEG during cognitive tasks and also the highest classification accuracy between pairs of tasks. We also find that phase-locking analysis provides the most distinct clustering of tasks based on their utilization of long-term memory. Finally, we show that phase-amplitude coupling is the least sensitive to contamination by intense jaw-clenching muscle artifact.
脑电图(EEG)在神经科的传统应用之外变得越来越有价值。现在,EEG 被用于神经精神疾病诊断、创伤性脑损伤的神经评估、神经治疗、游戏、神经反馈、正念和认知增强训练。增加 EEG 电极数量的趋势、新分析方法的发展以及大数据集的可用性,为寻找传达有关持续认知努力的最多信息的“感兴趣信号”带来了数据分析挑战。因此,我们比较了三种常见的神经同步测量方法,这些方法应用于 EEG 功率分析、相位锁定和相位-振幅耦合,以评估哪种分析方法在记录健康受试者执行八项认知任务(霍普金斯言语学习测试及其延迟版本、斯特鲁普测试、符号数字模态测试、受控口头单词联想测试、追踪标记测试、数字跨度测试和本顿视觉保持测试)时的 EEG 信号之间提供了最佳分离。我们发现,在这三种分析方法中,特定于额极和顶极 EEG 电极的相位-振幅耦合(4-7 Hz 的 theta 和 70-90 Hz 的高 gamma)提供了认知任务期间 EEG 之间的最大分离,以及任务对之间的最高分类准确性。我们还发现,相位锁定分析根据其对长期记忆的利用提供了最明显的任务聚类。最后,我们表明相位-振幅耦合对强烈的咬牙肌肉Artifact 的污染最不敏感。