Suppr超能文献

使用深度学习评估由上身振动反馈引发的单次 EEG 数据的感知紧迫性。

Evaluation of perceived urgency from single-trial EEG data elicited by upper-body vibration feedback using deep learning.

机构信息

Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE.

Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, UAE.

出版信息

Sci Rep. 2024 Aug 23;14(1):19604. doi: 10.1038/s41598-024-70508-1.

Abstract

Notification systems that convey urgency without adding cognitive burden are crucial in human-computer interaction. Haptic feedback systems, particularly those utilizing vibration feedback, have emerged as a compelling solution, capable of providing desirable levels of urgency depending on the application. High-risk applications require an evaluation of the urgency level elicited during critical notifications. Traditional evaluations of perceived urgency rely on subjective self-reporting and performance metrics, which, while useful, are not real-time and can be distracting from the task at hand. In contrast, EEG technology offers a direct, non-intrusive method of assessing the user's cognitive state. Leveraging deep learning, this study introduces a novel approach to evaluate perceived urgency from single-trial EEG data, induced by vibration stimuli on the upper body, utilizing our newly collected urgency-via-vibration dataset. The proposed model combines a 2D convolutional neural network with a temporal convolutional network to capture spatial and temporal EEG features, outperforming several established EEG models. The proposed model achieves an average classification accuracy of 83% through leave-one-subject-out cross-validation across three urgency classes (not urgent, urgent, and very urgent) from a single trial of EEG data. Furthermore, explainability analysis showed that the prefrontal brain region, followed by the central brain region, are the most influential in predicting the urgency level. A follow-up neural statistical analysis revealed an increase in event-related synchronization (ERS) in the theta frequency band (4-7 Hz) with the increased level of urgency, which is associated with high arousal and attention in the neuroscience literature. A limitation of this study is that the proposed model's performance was tested only the urgency-via-vibration dataset, which may affect the generalizability of the findings.

摘要

在人机交互中,传达紧急信息而不增加认知负担的通知系统至关重要。触觉反馈系统,特别是利用振动反馈的系统,已经成为一种引人注目的解决方案,能够根据应用提供所需的紧急程度。高风险应用需要评估在关键通知期间引起的紧急程度。传统的紧急程度感知评估依赖于主观自我报告和性能指标,虽然这些方法有用,但它们不是实时的,并且可能会分散手头任务的注意力。相比之下,脑电图 (EEG) 技术提供了一种直接、非侵入性的方法来评估用户的认知状态。本研究利用深度学习,从振动刺激引起的单次 EEG 数据中引入了一种新的方法来评估感知的紧急程度,使用我们新收集的通过振动传达紧急程度的数据集。该模型结合了二维卷积神经网络和时间卷积网络,以捕获空间和时间 EEG 特征,在几个既定的 EEG 模型中表现出色。该模型通过在三个紧急程度类别(不紧急、紧急和非常紧急)中的每个类别中进行一次 EEG 数据的单次试验进行的留一受试者外交叉验证,平均分类准确率达到 83%。此外,可解释性分析表明,预测紧急程度最相关的脑区是前额叶,其次是中央脑区。后续的神经统计学分析显示,随着紧急程度的增加,theta 频段(4-7 Hz)的事件相关同步 (ERS) 增加,这与神经科学文献中高唤醒和注意力有关。本研究的一个限制是,仅在通过振动传达紧急程度的数据集上测试了所提出的模型的性能,这可能会影响研究结果的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6413/11344029/dbdd336e23a6/41598_2024_70508_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验