Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE.
Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, UAE.
Sci Rep. 2024 Aug 23;14(1):19604. doi: 10.1038/s41598-024-70508-1.
Notification systems that convey urgency without adding cognitive burden are crucial in human-computer interaction. Haptic feedback systems, particularly those utilizing vibration feedback, have emerged as a compelling solution, capable of providing desirable levels of urgency depending on the application. High-risk applications require an evaluation of the urgency level elicited during critical notifications. Traditional evaluations of perceived urgency rely on subjective self-reporting and performance metrics, which, while useful, are not real-time and can be distracting from the task at hand. In contrast, EEG technology offers a direct, non-intrusive method of assessing the user's cognitive state. Leveraging deep learning, this study introduces a novel approach to evaluate perceived urgency from single-trial EEG data, induced by vibration stimuli on the upper body, utilizing our newly collected urgency-via-vibration dataset. The proposed model combines a 2D convolutional neural network with a temporal convolutional network to capture spatial and temporal EEG features, outperforming several established EEG models. The proposed model achieves an average classification accuracy of 83% through leave-one-subject-out cross-validation across three urgency classes (not urgent, urgent, and very urgent) from a single trial of EEG data. Furthermore, explainability analysis showed that the prefrontal brain region, followed by the central brain region, are the most influential in predicting the urgency level. A follow-up neural statistical analysis revealed an increase in event-related synchronization (ERS) in the theta frequency band (4-7 Hz) with the increased level of urgency, which is associated with high arousal and attention in the neuroscience literature. A limitation of this study is that the proposed model's performance was tested only the urgency-via-vibration dataset, which may affect the generalizability of the findings.
在人机交互中,传达紧急信息而不增加认知负担的通知系统至关重要。触觉反馈系统,特别是利用振动反馈的系统,已经成为一种引人注目的解决方案,能够根据应用提供所需的紧急程度。高风险应用需要评估在关键通知期间引起的紧急程度。传统的紧急程度感知评估依赖于主观自我报告和性能指标,虽然这些方法有用,但它们不是实时的,并且可能会分散手头任务的注意力。相比之下,脑电图 (EEG) 技术提供了一种直接、非侵入性的方法来评估用户的认知状态。本研究利用深度学习,从振动刺激引起的单次 EEG 数据中引入了一种新的方法来评估感知的紧急程度,使用我们新收集的通过振动传达紧急程度的数据集。该模型结合了二维卷积神经网络和时间卷积网络,以捕获空间和时间 EEG 特征,在几个既定的 EEG 模型中表现出色。该模型通过在三个紧急程度类别(不紧急、紧急和非常紧急)中的每个类别中进行一次 EEG 数据的单次试验进行的留一受试者外交叉验证,平均分类准确率达到 83%。此外,可解释性分析表明,预测紧急程度最相关的脑区是前额叶,其次是中央脑区。后续的神经统计学分析显示,随着紧急程度的增加,theta 频段(4-7 Hz)的事件相关同步 (ERS) 增加,这与神经科学文献中高唤醒和注意力有关。本研究的一个限制是,仅在通过振动传达紧急程度的数据集上测试了所提出的模型的性能,这可能会影响研究结果的通用性。