Dirmeyer Paul A, Wu Jiexia, Norton Holly E, Dorigo Wouter A, Quiring Steven M, Ford Trenton W, Santanello Joseph A, Bosilovich Michael G, Ek Michael B, Koster Randal D, Balsamo Gianpaolo, Lawrence David M
George Mason University, Fairfax, VA, USA.
Vienna University of Technology, Vienna, Austria.
J Hydrometeorol. 2016 Apr;17(4):1049-1067. doi: 10.1175/JHM-D-15-0196.1. Epub 2016 Mar 15.
Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.
将四个处于非耦合和耦合配置的陆面模型与来自美国本土19个网络的每日土壤湿度观测数据进行比较,以确定此类比较的可行性,并探究模型数据和观测数据的特征。首先,对观测数据的误差特征以及空间和时间变异性的表现进行分析。一些网络在与模型网格盒相当的区域内有多个站点;对于这些网络,我们发现,在计算统计数据之前对站点进行汇总,对方差估计影响不大,但土壤湿度记忆对汇总很敏感。一些网络的统计数据与相邻网络的统计数据不同,这可能是由于仪器、校准和维护方面的差异所致。埋入式传感器的随机误差似乎比近场遥感技术要小,散热传感器的时间变异性比其他类型的传感器要小。使用三个指标对模型土壤湿度进行评估:时间标准差、时间相关性(记忆)和空间相关性(长度尺度)。模型在捕捉不同气候条件下指标的大尺度变异性方面表现相对较好,但在再现数百公里及更小尺度上的观测模式方面表现较差。非耦合陆面模型并不比耦合模型配置表现更好,再分析也不比独立运行的模型表现更优。发现空间去相关尺度难以诊断。在使用来自具有不同类型传感器和测量技术的多个土壤湿度网络的数据进行模型验证、校准或数据同化时,需要格外谨慎。在进行比较之前,应将模型数据和观测数据置于相同的空间和时间尺度上。