AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Centrum Wiskunde en Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands; Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium.
Methods. 2018 Dec 1;151:21-27. doi: 10.1016/j.ymeth.2018.04.004. Epub 2018 Apr 12.
With mass spectrometry imaging (MSI) on tissue microarrays (TMAs) a large number of biomolecules can be studied for many patients at the same time, making it an attractive tool for biomarker discovery. Here we investigate whether lymph node metastasis can be predicted from MALDI-MSI data. Measurements are performed on TMAs and then filtered based on spectral intensity and the percentage of tumor cells, after which the resulting data for 122 patients is further preprocessed. We assume differences between patients with and without metastasis are expressed in a limited number of features. Two univariate feature selection methods are applied to reduce the dimensionality of the MALDI-MSI data. The selected features are then used in combination with three classifiers. The best classification scores are obtained with a decision tree classifier, which classifies about 72% of patients correctly. Almost all the predictive power comes from a single peak (m/z 718.4). The sensitivity of our classification approach, which can be generically used to search for biomarkers, is investigated using artificially modified data.
利用组织微阵列(TMA)上的质谱成像(MSI),可以同时对许多患者的大量生物分子进行研究,使其成为发现生物标志物的一种有吸引力的工具。在这里,我们研究了是否可以从 MALDI-MSI 数据预测淋巴结转移。在 TMA 上进行测量,然后根据光谱强度和肿瘤细胞的百分比进行过滤,之后对 122 名患者的结果数据进行进一步预处理。我们假设患者之间的差异表现为少数几个特征。应用两种单变量特征选择方法来降低 MALDI-MSI 数据的维数。然后,使用所选特征与三个分类器相结合。决策树分类器获得了最佳分类评分,可正确分类约 72%的患者。几乎所有的预测能力都来自于一个单一的峰(m/z 718.4)。我们的分类方法的灵敏度可以使用人工修改的数据进行调查,该方法可以通用地用于搜索生物标志物。