Rother Michael, Quitzke Vivien
Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany.
Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany.
Biochim Biophys Acta Gen Subj. 2018 Nov;1862(11):2451-2462. doi: 10.1016/j.bbagen.2018.04.008. Epub 2018 Apr 13.
The major biological form of selenium is that of the co-translationally inserted amino acid selenocysteine (Sec). In Archaea, the majority of proteins containing Sec, selenoproteins, are involved in methanogenesis. However, the function of this residue is often not known because selenium-independent homologs of the selenoproteins can be employed, sometimes even in one organism.
This review summarizes current knowledge about the selenoproteins of Archaea, the metabolic pathways where they are involved, and discusses the (potential) function of individual Sec residues. Also, what is known about the "archaeal" way of selenoprotein synthesis, and the regulatory mechanism leading to the replacement of the selenoproteins with selenium-independent homologs, will be presented. Where appropriate, similarities with (and differences to) the respective steps employed in the other two domains, Bacteria and Eukarya, will be emphasized.
Genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has revealed that the pathway of Sec synthesis in Archaea and Eukarya are principally identical and that Sec insertion in Eukarya probably evolved from an archaeal mechanism employed prior to the separation of the archaeal and eukaryal lines of decent.
In light of the emerging close phylogenetic relationship of Eukarya and Archaea, archaeal models may be highly valuable tools for unraveling "eukaryotic" principles in molecular and cell biology.
硒的主要生物学形式是共翻译插入的氨基酸硒代半胱氨酸(Sec)。在古菌中,大多数含Sec的蛋白质即硒蛋白都参与甲烷生成。然而,由于有时甚至在同一生物体中也可使用硒蛋白的非硒依赖性同源物,所以该残基的功能通常并不清楚。
本综述总结了关于古菌硒蛋白的现有知识、它们所涉及的代谢途径,并讨论了单个Sec残基的(潜在)功能。此外,还将介绍关于硒蛋白合成的“古菌”方式以及导致用非硒依赖性同源物取代硒蛋白的调控机制的已知信息。在适当的地方,将强调与其他两个域(细菌和真核生物)所采用的相应步骤的异同。
通过对编码Sec的古菌基因组序列分析所指导的遗传和生化研究表明,古菌和真核生物中Sec的合成途径基本相同,并且真核生物中Sec的插入可能是从古菌和真核生物分化谱系分离之前所采用的古菌机制进化而来的。
鉴于真核生物和古菌之间新出现的密切系统发育关系,古菌模型可能是揭示分子和细胞生物学中“真核”原理的极有价值的工具。