Stott Matthew A, Ganjalizadeh Vahid, Meena Gopikrishnan, McMurray Johnny, Olsen Maclain, Orfila Marcos, Schmidt Holger, Hawkins Aaron R
Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602 USA.
School of Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064 USA.
IEEE Photonics Technol Lett. 2018 Oct 15;30(16):1487-1490. doi: 10.1109/LPT.2018.2858258. Epub 2018 Jul 23.
Multimode interference (MMI) waveguides can be used to create wavelength-dependent spot patterns which enables simultaneous analyte detection on a single optofluidic chip, useful for disease diagnostics. The fidelity of such multi-spot patterns is important for high sensitivity and accurate target identification. Buried rib structures have been incorporated into these SiO-based waveguides to improve environmental stability. Through experiments and simulation, this letter explores design parameters for a buried MMI rib waveguide based on anti-resonant reflecting optical waveguides in order to produce high-fidelity spot patterns. Optimal rib heights and widths are reported in the context of available microfabrication etch technology and performance for an optimized biosensor is shown.
多模干涉(MMI)波导可用于创建与波长相关的光斑图案,从而能够在单个光流体芯片上同时进行分析物检测,这对疾病诊断很有用。这种多光斑图案的保真度对于高灵敏度和准确的目标识别很重要。已将掩埋肋结构纳入这些基于SiO的波导中,以提高环境稳定性。通过实验和模拟,本文探讨了基于反谐振反射光波导的掩埋MMI肋波导的设计参数,以产生高保真光斑图案。在现有微加工蚀刻技术的背景下报告了最佳肋高和宽度,并展示了优化生物传感器的性能。