Suppr超能文献

光流体流通式生物传感器灵敏度——模型与实验

Optofluidic Flow-Through Biosensor Sensitivity - Model and Experiment.

作者信息

Wright Joel G, Amin Md Nafiz, Meena Gopikrishnan G, Schmidt Holger, Hawkins Aaron R

机构信息

Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA.

School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.

出版信息

J Lightwave Technol. 2021 May 15;39(10):3330-3340. doi: 10.1109/jlt.2021.3061872. Epub 2021 Feb 24.

Abstract

We present a model and simulation for predicting the detected signal of a fluorescence-based optical biosensor built from optofluidic waveguides. Typical applications include flow experiments to determine pathogen concentrations in a biological sample after tagging relevant DNA or RNA sequences. An overview of the biosensor geometry and fabrication processes is presented. The basis for the predictive model is also outlined. The model is then compared to experimental results for three different biosensor designs. The model is shown to have similar signal statistics as physical tests, illustrating utility as a pre-fabrication design tool and as a predictor of detection sensitivity.

摘要

我们提出了一个模型和模拟方法,用于预测基于光流体波导构建的荧光光学生物传感器的检测信号。典型应用包括在标记相关DNA或RNA序列后,通过流动实验测定生物样品中的病原体浓度。本文介绍了生物传感器的几何结构和制造工艺概况,概述了预测模型的基础。然后将该模型与三种不同生物传感器设计的实验结果进行比较。结果表明,该模型具有与物理测试相似的信号统计特性,说明了其作为预制设计工具和检测灵敏度预测器的实用性。

相似文献

1
Optofluidic Flow-Through Biosensor Sensitivity - Model and Experiment.
J Lightwave Technol. 2021 May 15;39(10):3330-3340. doi: 10.1109/jlt.2021.3061872. Epub 2021 Feb 24.
2
3
FPGA Integrated Optofluidic Biosensor for Real-Time Single Biomarker Analysis.
IEEE Photonics J. 2022 Feb;14(1). doi: 10.1109/jphot.2021.3127484. Epub 2021 Nov 15.
4
Optofluidic devices with integrated solid-state nanopores.
Mikrochim Acta. 2016 Apr;183(4):1275-1287. doi: 10.1007/s00604-016-1758-y. Epub 2016 Jan 27.
5
Optofluidic Lab-on-a-Chip Fluorescence Sensor Using Integrated Buried ARROW (bARROW) Waveguides.
Micromachines (Basel). 2017 Aug;8(8). doi: 10.3390/mi8080252. Epub 2017 Aug 17.
6
Buried Rib SiO Multimode Interference Waveguides for Optofluidic Multiplexing.
IEEE Photonics Technol Lett. 2018 Oct 15;30(16):1487-1490. doi: 10.1109/LPT.2018.2858258. Epub 2018 Jul 23.
7
Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
IEEE J Quantum Electron. 2018 Jun;54(3). doi: 10.1109/JQE.2018.2816120. Epub 2018 Mar 15.
8
Optofluidic waveguides: I. Concepts and implementations.
Microfluid Nanofluidics. 2008 Jan 1;4(1-2):3-16. doi: 10.1007/s10404-007-0199-7.
9
Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-based SiO Waveguides.
IEEE J Sel Top Quantum Electron. 2016 Nov-Dec;22(6). doi: 10.1109/JSTQE.2016.2549801. Epub 2016 Apr 21.
10
Optofluidic waveguides: II. Fabrication and structures.
Microfluid Nanofluidics. 2007 Jul 19;4(1-2):17-32. doi: 10.1007/s10404-007-0194-z.

引用本文的文献

1
Dual optofluidic distributed feedback dye lasers for multiplexed biosensing applications.
Sci Rep. 2023 Oct 6;13(1):16824. doi: 10.1038/s41598-023-42671-4.
2
Comparison of Illumination Methods for Flow-Through Optofluidic Biosensors.
Micromachines (Basel). 2023 Mar 24;14(4):723. doi: 10.3390/mi14040723.
3
Performance Comparison of Flow-Through Optofluidic Biosensor Designs.
Biosensors (Basel). 2021 Jul 7;11(7):226. doi: 10.3390/bios11070226.

本文引用的文献

1
7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening.
Opt Express. 2020 Oct 26;28(22):33019-33027. doi: 10.1364/OE.402311.
2
3× multiplexed detection of antibiotic resistant plasmids with single molecule sensitivity.
Lab Chip. 2020 Oct 21;20(20):3763-3771. doi: 10.1039/d0lc00640h. Epub 2020 Sep 7.
3
Enhanced Detection of Single Viruses On-Chip via Hydrodynamic Focusing.
IEEE J Sel Top Quantum Electron. 2019 Jan-Feb;25(1). doi: 10.1109/JSTQE.2018.2854574. Epub 2018 Jul 9.
4
Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
IEEE J Quantum Electron. 2018 Jun;54(3). doi: 10.1109/JQE.2018.2816120. Epub 2018 Mar 15.
5
Optofluidic Lab-on-a-Chip Fluorescence Sensor Using Integrated Buried ARROW (bARROW) Waveguides.
Micromachines (Basel). 2017 Aug;8(8). doi: 10.3390/mi8080252. Epub 2017 Aug 17.
6
Multiplexed efficient on-chip sample preparation and sensitive amplification-free detection of Ebola virus.
Biosens Bioelectron. 2017 May 15;91:489-496. doi: 10.1016/j.bios.2016.12.071. Epub 2017 Jan 3.
7
On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood.
Biomicrofluidics. 2016 Dec 15;10(6):064116. doi: 10.1063/1.4968033. eCollection 2016 Nov.
9
An optical-coding method to measure particle distribution in microfluidic devices.
AIP Adv. 2011 Jun;1(2):22155. doi: 10.1063/1.3609967. Epub 2011 Jun 29.
10
Integrated ARROW waveguides with hollow cores.
Opt Express. 2004 Jun 14;12(12):2710-5. doi: 10.1364/opex.12.002710.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验