Suppr超能文献

癌症的分子分型:现状与向临床应用的推进。

Molecular subtyping of cancer: current status and moving toward clinical applications.

机构信息

Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.

Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.

出版信息

Brief Bioinform. 2019 Mar 25;20(2):572-584. doi: 10.1093/bib/bby026.

Abstract

Cancer is a collection of genetic diseases, with large phenotypic differences and genetic heterogeneity between different types of cancers and even within the same cancer type. Recent advances in genome-wide profiling provide an opportunity to investigate global molecular changes during the development and progression of cancer. Meanwhile, numerous statistical and machine learning algorithms have been designed for the processing and interpretation of high-throughput molecular data. Molecular subtyping studies have allowed the allocation of cancer into homogeneous groups that are considered to harbor similar molecular and clinical characteristics. Furthermore, this has helped researchers to identify both actionable targets for drug design as well as biomarkers for response prediction. In this review, we introduce five frequently applied techniques for generating molecular data, which are microarray, RNA sequencing, quantitative polymerase chain reaction, NanoString and tissue microarray. Commonly used molecular data for cancer subtyping and clinical applications are discussed. Next, we summarize a workflow for molecular subtyping of cancer, including data preprocessing, cluster analysis, supervised classification and subtype characterizations. Finally, we identify and describe four major challenges in the molecular subtyping of cancer that may preclude clinical implementation. We suggest that standardized methods should be established to help identify intrinsic subgroup signatures and build robust classifiers that pave the way toward stratified treatment of cancer patients.

摘要

癌症是一组遗传疾病,不同类型的癌症甚至同一癌症类型之间存在很大的表型差异和遗传异质性。全基因组分析的最新进展为研究癌症发生和进展过程中的全局分子变化提供了机会。同时,已经设计了许多统计和机器学习算法来处理和解释高通量分子数据。分子亚型研究允许将癌症分配到同质组中,这些同质组被认为具有相似的分子和临床特征。此外,这有助于研究人员确定药物设计的作用靶点以及用于预测反应的生物标志物。在这篇综述中,我们介绍了生成分子数据的五种常用技术,即微阵列、RNA 测序、定量聚合酶链反应、NanoString 和组织微阵列。讨论了常用于癌症亚型和临床应用的分子数据。接下来,我们总结了癌症分子分型的工作流程,包括数据预处理、聚类分析、监督分类和亚型特征描述。最后,我们确定并描述了癌症分子分型中可能阻碍临床应用的四个主要挑战。我们建议建立标准化方法,以帮助识别内在亚群特征并构建稳健的分类器,为癌症患者的分层治疗铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验