Department of Civil and Environmental Engineering , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.
Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , 100050 , China.
Environ Sci Technol. 2018 Jun 5;52(11):6565-6575. doi: 10.1021/acs.est.7b06389. Epub 2018 May 17.
Genotoxicity is considered a major concern for drinking water disinfection byproducts (DBPs). Of over 700 DBPs identified to date, only a small number has been assessed with limited information for DBP genotoxicity mechanism(s). In this study, we evaluated genotoxicity of 20 regulated and unregulated DBPs applying a quantitative toxicogenomics approach. We used GFP-fused yeast strains that examine protein expression profiling of 38 proteins indicative of all known DNA damage and repair pathways. The toxicogenomics assay detected genotoxicity potential of these DBPs that is consistent with conventional genotoxicity assays end points. Furthermore, the high-resolution, real-time pathway activation and protein expression profiling, in combination with clustering analysis, revealed molecular level details in the genotoxicity mechanisms among different DBPs and enabled classification of DBPs based on their distinct DNA damage effects and repair mechanisms. Oxidative DNA damage and base alkylation were confirmed to be the main molecular mechanisms of DBP genotoxicity. Initial exploration of QSAR modeling using moleular genotoxicity end points (PELI) suggested that genotoxicity of DBPs in this study was correlated with topological and quantum chemical descriptors. This study presents a toxicogenomics-based assay for fast and efficient mechanistic genotoxicity screening and assessment of a large number of DBPs. The results help to fill in the knowledge gap in the understanding of the molecular mechanisms of DBP genotoxicity.
致毒遗传效应被视为饮用水消毒副产物(DBP)的主要关注点。在迄今为止已鉴定出的 700 多种 DBP 中,只有少数几种已经过评估,并且对 DBP 致毒遗传效应机制的了解也很有限。在这项研究中,我们采用定量毒理基因组学方法评估了 20 种受管制和不受管制的 DBP 的致毒遗传效应。我们使用了 GFP 融合酵母菌株,该菌株可检测 38 种蛋白质的蛋白质表达谱,这些蛋白质代表了所有已知的 DNA 损伤和修复途径。毒理基因组学检测到这些 DBP 的致毒遗传效应潜能与传统致毒遗传效应终点检测结果一致。此外,高分辨率、实时的通路激活和蛋白质表达谱,与聚类分析相结合,揭示了不同 DBP 之间致毒遗传效应机制的分子水平细节,并使我们能够根据其不同的 DNA 损伤效应和修复机制对 DBP 进行分类。氧化 DNA 损伤和碱基烷基化被证实为 DBP 致毒遗传效应的主要分子机制。利用分子致毒遗传终点(PELI)进行的 QSAR 模型的初步探索表明,本研究中 DBP 的致毒遗传效应与拓扑和量子化学描述符相关。这项研究提出了一种基于毒理基因组学的快速、有效的机制致毒遗传效应筛选和大量 DBP 评估方法。研究结果有助于填补对 DBP 致毒遗传效应分子机制理解的知识空白。