Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Curr Opin Neurobiol. 2018 Jun;50:211-221. doi: 10.1016/j.conb.2018.03.006. Epub 2018 Apr 13.
Optical imaging methods are powerful tools in neuroscience as they can systematically monitor the activity of neuronal populations with high spatiotemporal resolution using calcium or voltage indicators. Moreover, caged compounds and optogenetic actuators enable to optically manipulate neural activity. Among optical methods, computer-generated holography offers an enormous flexibility to sculpt the excitation light in three-dimensions (3D), particularly when combined with two-photon light sources. By projecting holographic light patterns on the sample, the activity of multiple neurons across a 3D brain volume can be simultaneously imaged or optically manipulated with single-cell precision. This flexibility makes two-photon holographic microscopy an ideal all-optical platform to simultaneously read and write activity in neuronal populations in vivo in 3D, a critical ability to dissect the function of neural circuits.
光学成像方法是神经科学领域的强大工具,因为它们可以使用钙或电压指示剂以高时空分辨率系统地监测神经元群体的活动。此外,笼状化合物和光遗传学执行器可以实现对神经活动的光学操纵。在光学方法中,计算机生成的全息图提供了极大的灵活性,可以在三维(3D)中雕刻激发光,特别是与双光子光源结合使用时。通过将全息光图案投影到样品上,可以以单细胞精度同时对 3D 脑体积中的多个神经元的活动进行成像或光学操纵。这种灵活性使双光子全息显微镜成为一个理想的全光学平台,可在 3D 中同时读取和写入体内神经元群体的活动,这是剖析神经回路功能的关键能力。