Ronzitti Emiliano, Conti Rossella, Zampini Valeria, Tanese Dimitrii, Foust Amanda J, Klapoetke Nathan, Boyden Edward S, Papagiakoumou Eirini, Emiliani Valentina
Neurophotonics Laboratory, Wavefront Engineering Microscopy Group, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8250, Université Paris Descartes, 75270 Paris Cedex 06, France.
Media Laboratory and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and.
J Neurosci. 2017 Nov 1;37(44):10679-10689. doi: 10.1523/JNEUROSCI.1246-17.2017. Epub 2017 Oct 2.
Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both and , but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns.
微电路活动如何与行为和病理状态存在因果关系?以高空间和时间复杂性诱发动作电位的挑战需要光传递方法和定制视蛋白的进一步联合开发。双光子(2P)光靶向策略在光敏神经元中均已证明能深入产生动作电位,但迄今为止缺乏诱导精确计时的尖峰事件所需的时间精度。在这里,我们表明,通过对高度光敏且快速的视蛋白Chronos进行2P全息放大激光照射实现的高效电流整合,可在瑞士雄性小鼠的脑片中以亚毫秒精度诱发尖峰,并以高达100Hz的频率重复放电。这些结果为以模仿自然微电路活动所需的空间和时间复杂性进行光遗传学操纵铺平了道路。为了揭示神经元活动与行为之间的因果联系,有必要开发实验策略来诱导网络微电路在空间和时间上的复杂扰动。双光子计算机生成全息术(2P-CGH)最近证明了在大脑深度对选定神经元池进行单细胞精度的3D光遗传学控制。在这里,我们表明,用放大激光2P-CGH激发快速视蛋白Chronos可实现具有前所未有的时间控制的细胞分辨率靶向,使用低激光功率密度以亚毫秒起始精度驱动高达100Hz的尖峰。该系统实现了模拟自然神经元网络活动模式的光遗传学输入模式所需的空间灵活性和时间精度的独特组合。