Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America.
Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America.
PLoS Biol. 2018 Apr 18;16(4):e2005707. doi: 10.1371/journal.pbio.2005707. eCollection 2018 Apr.
Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.
线粒体功能影响细胞生理的许多方面,最近有报道称其在表观遗传学中也具有作用。从机制上讲,线粒体功能如何改变细胞核中的 DNA 甲基化模式仍未得到明确界定。在本研究中,我们使用诱导的线粒体 DNA(mtDNA)耗竭细胞培养模型表明,进行性的线粒体功能障碍导致以各种氨基酸代谢为中心的早期转录和代谢程序,包括参与蛋氨酸循环的氨基酸。我们发现,该程序还会增加 DNA 甲基化,主要发生在差异表达的基因中。在 mtDNA 缺失的情况下维持线粒体烟酰胺腺嘌呤二核苷酸还原(NADH)氧化可挽救蛋氨酸回收和多胺合成,并防止 DNA 甲基化和基因表达的变化,但不会影响丝氨酸/叶酸代谢或转硫作用。这项工作提供了线粒体功能与表观遗传调控基因表达之间的新的机制联系,涉及多胺和蛋氨酸代谢对三羧酸(TCA)循环变化的反应。鉴于这些发现的意义,未来在不同生理环境和体内进行的研究是必要的。