Suppr超能文献

步态生物力学中的大数据分析:当前趋势与未来方向。

Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

作者信息

Phinyomark Angkoon, Petri Giovanni, Ibáñez-Marcelo Esther, Osis Sean T, Ferber Reed

机构信息

1ISI Foundation, Via Chisola 5, Turin, 10126 Italy.

2Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada.

出版信息

J Med Biol Eng. 2018;38(2):244-260. doi: 10.1007/s40846-017-0297-2. Epub 2017 Jul 17.

Abstract

The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

摘要

生物力学研究中数据量的不断增加,极大地提升了开发先进的多变量分析和机器学习技术的重要性,这些技术更能处理“大数据”。因此,数据科学方法的进步将拓展知识,以检验与步行和跑步步态相关的肌肉骨骼损伤的生物力学风险因素的新假设。本文首先简要介绍一种自动化三维(3D)生物力学步态数据采集系统:3D GAIT,接着阐述步态生物力学领域的研究如何符合大数据5V定义中的量:体量、速度、多样性、准确性和价值。接下来,我们综述了基于多变量和机器学习方法的步态分析的最新研究与开发,这些方法可应用于大数据分析。这些现代生物力学步态分析方法包括几个主要模块,如初始输入特征、降维(特征选择和提取)以及学习算法(分类和聚类)。最后,概述并讨论了一种名为“拓扑数据分析”的有前景的大数据探索工具以及未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d632/5897457/842162ee0517/40846_2017_297_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验