Suppr超能文献

用于骨修复的远程控制再生技术的翻译。

Translation of remote control regenerative technologies for bone repair.

作者信息

Markides Hareklea, McLaren Jane S, Telling Neil D, Alom Noura, Al-Mutheffer E'atelaf A, Oreffo Richard O C, Zannettino Andrew, Scammell Brigitte E, White Lisa J, El Haj Alicia J

机构信息

1Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK.

2Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD UK.

出版信息

NPJ Regen Med. 2018 Apr 17;3:9. doi: 10.1038/s41536-018-0048-1. eCollection 2018.

Abstract

The role of biomechanical stimuli, or mechanotransduction, in normal bone homeostasis and repair is understood to facilitate effective osteogenesis of mesenchymal stem cells (MSCs) in vitro. Mechanotransduction has been integrated into a multitude of in vitro bone tissue engineering strategies and provides an effective means of controlling cell behaviour towards therapeutic outcomes. However, the delivery of mechanical stimuli to exogenous MSC populations, post implantation, poses a significant translational hurdle. Here, we describe an innovative bio-magnetic strategy, MICA, where magnetic nanoparticles (MNPs) are used to remotely deliver mechanical stimuli to the mechano-receptor, TREK-1, resulting in activation and downstream signalling via an external magnetic array. In these studies, we have translated MICA to a pre-clinical ovine model of bone injury to evaluate functional bone repair. We describe the development of a magnetic array capable of in vivo MNP manipulation and subsequent osteogenesis at equivalent field strengths in vitro. We further demonstrate that the viability of MICA-activated MSCs in vivo is unaffected 48 h post implantation. We present evidence to support early accelerated repair and preliminary enhanced bone growth in MICA-activated defects within individuals compared to internal controls. The variability in donor responses to MICA-activation was evaluated in vitro revealing that donors with poor osteogenic potential were most improved by MICA-activation. Our results demonstrate a clear relationship between responders to MICA in vitro and in vivo. These unique experiments offer exciting clinical applications for cell-based therapies as a practical in vivo source of dynamic loading, in real-time, in the absence of pharmacological agents.

摘要

生物力学刺激或机械转导在正常骨稳态和修复中的作用被认为有助于间充质干细胞(MSC)在体外有效地进行成骨作用。机械转导已被整合到多种体外骨组织工程策略中,并提供了一种控制细胞行为以实现治疗效果的有效手段。然而,在植入后向外源MSC群体传递机械刺激存在重大的转化障碍。在这里,我们描述了一种创新的生物磁策略,即MICA,其中磁性纳米颗粒(MNP)用于远程向机械感受器TREK-1传递机械刺激,通过外部磁阵列导致激活和下游信号传导。在这些研究中,我们已将MICA转化为骨损伤的临床前绵羊模型,以评估功能性骨修复。我们描述了一种能够在体内操纵MNP并随后在体外等效场强下进行成骨的磁阵列的开发。我们进一步证明,MICA激活的MSC在体内植入后48小时的活力不受影响。我们提供证据支持与内部对照相比,个体内MICA激活的缺损早期加速修复和初步增强的骨生长。在体外评估了供体对MICA激活反应的变异性,发现成骨潜力差的供体通过MICA激活改善最为明显。我们的结果证明了体外和体内对MICA反应者之间的明确关系。这些独特的实验为基于细胞的疗法提供了令人兴奋的临床应用,作为在没有药物的情况下实时动态加载的实用体内来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/545e/5904134/669e9028b884/41536_2018_48_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验