Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai 200443 , China.
Key Lab of Urban Pollutant Conversion, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , China.
ACS Nano. 2018 May 22;12(5):4246-4258. doi: 10.1021/acsnano.7b07606. Epub 2018 Apr 26.
Persistent luminous nanoparticles (PLNPs) have been capturing increasing attention in biomedical imaging because of their long-life emission and concomitant benefits ( e.g., zero-autofluorescence background, high signal-to-noise ratio). Although there are quite some synthetic methodologies to synthesize PLNPs, those for constructing functional structured PLNPs remain largely unexplored. Herein we report the design principle, synthesis route, and proof-of-concept applications of hollow structured PLNPs with near-infrared (NIR) persistent luminescence, namely afterglow, and tunable sizes for tumor afterglow imaging and chemical/photodynamic therapies. The design principle leverages on the crystallization of the immobilized parent ions on the purgeable carbon spheres. This strategy provides large and size-tunable hollow cavities to PLNPs after calcination. Building on the hollow cavity of PLNPs, high chemical drug (DOX) or photosensitizer (Si-Pc) loading can be achieved. The DOX/Si-Pc-loaded hollow PLNPs exhibit efficient tumor suppression based on the features of large cavity and afterglow of PLNPs. These hollow structured PLNPs, like traditional solid PLNPs, are quite stable and can be repeatedly activated, and particularly can selectively target tumor lesion, permitting rechargeable afterglow imaging in living mice. Our research supplies a strategy to synthesize hollow structured PLNPs, and hopefully it could inspire other innovative structures for cancer theranostics.
持久发光纳米颗粒(PLNPs)因其长寿命发射和伴随的益处(例如,零自发荧光背景、高信噪比),在生物医学成像中引起了越来越多的关注。尽管有相当多的合成方法来合成 PLNPs,但构建功能性结构的 PLNPs 的方法在很大程度上仍未得到探索。在此,我们报告了具有近红外(NIR)持久发光的中空结构 PLNPs 的设计原理、合成路线和概念验证应用,即余晖,以及可调尺寸的肿瘤余晖成像和化学/光动力治疗。设计原理利用可吹扫碳球上固定的母体离子的结晶。这种策略在煅烧后为 PLNPs 提供了大的且尺寸可调的中空腔。基于 PLNPs 的中空腔,可实现高化学药物(DOX)或光敏剂(Si-Pc)的负载。负载 DOX/Si-Pc 的中空 PLNPs 基于 PLNPs 的大空腔和余晖的特点,表现出高效的肿瘤抑制作用。这些中空结构的 PLNPs 与传统的实心 PLNPs 一样,非常稳定,可以反复激活,特别是可以选择性地靶向肿瘤病变,允许在活小鼠中进行可充电的余晖成像。我们的研究提供了一种合成中空结构 PLNPs 的策略,希望它能激发其他用于癌症治疗的创新结构。