Kürüm Esra, Hughes John, Li Runze, Shiffman Saul
Department of Statistics, University of California Riverside, Riverside, CA 92521, USA.
Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Stat Interface. 2018;11(2):203-221. doi: 10.4310/SII.2018.v11.n2.a1.
We propose a copula-based joint modeling framework for mixed longitudinal responses. Our approach permits all model parameters to vary with time, and thus will enable researchers to reveal dynamic response-predictor relationships and response-response associations. We call the new class of models TIMECOP because we model dependence using a time-varying copula. We develop a one-step estimation procedure for the TIMECOP parameter vector, and also describe how to estimate standard errors. We investigate the finite sample performance of our procedure via three simulation studies, one of which shows that our procedure performs well under ignorable missingness. We also illustrate the applicability of our approach by analyzing binary and continuous responses from the Women's Interagency HIV Study and a smoking cessation program.
我们提出了一种基于 copula 的混合纵向响应联合建模框架。我们的方法允许所有模型参数随时间变化,从而使研究人员能够揭示动态响应预测关系和响应响应关联。我们将新的模型类别称为 TIMECOP,因为我们使用时变 copula 对依赖性进行建模。我们为 TIMECOP 参数向量开发了一种一步估计程序,并描述了如何估计标准误差。我们通过三项模拟研究调查了我们程序的有限样本性能,其中一项研究表明我们的程序在可忽略的缺失情况下表现良好。我们还通过分析妇女机构间艾滋病毒研究和戒烟计划中的二元和连续响应来说明我们方法的适用性。