Suppr超能文献

3.0 T磁共振成像中表观扩散系数比值与前列腺癌Gleason评分的相关性

Correlation of apparent diffusion coefficient ratio on 3.0 T MRI with prostate cancer Gleason score.

作者信息

Jyoti Rajeev, Jain Tarun Pankaj, Haxhimolla Hodo, Liddell Heath, Barrett Sean Edward

机构信息

Universal Medical Imaging, Canberra, Calvary Hospital, Bruce, Australia.

Australian National University, Canberra, ACT, Australia.

出版信息

Eur J Radiol Open. 2018 Mar 30;5:58-63. doi: 10.1016/j.ejro.2018.03.002. eCollection 2018.

Abstract

INTRODUCTION

The purpose was to investigate the usefulness of ADC on Diffusion MRI to discriminate between benign and malignant lesions of Prostate.

METHODS

Images of patients who underwent in-gantry MRI guided prostate lesion biopsy were retrospectively analyzed. Prostate Cancers with 20% or more Gleason score (GS) pattern 3 + 3 = 6 in each core or any volume of higher Gleason score pattern were included. ADC was calculated by two reviewers for each lesion. The ADC was calculated for each lesion by dividing the lowest ADC value in a lesion and highest ADC value in normal prostate in peripheral zone (PZ). ADC values were compared with the biopsy result. Data was analysed using independent samples T-test, Spearman correlation, intra-class correlation coefficient (ICC) and Receiver operating characteristic (ROC) curve.

RESULTS

45 lesions in 33 patients were analyzed. 12 lesions were in transitional zone (TZ) and 33 in perpheral zone PZ. All lesions demonstrated an ADC of 0.45 or lower. GS demonstrated a negative correlation with both the ADC value and ADC. However, ADC (p < 0.001) demonstrated a stronger correlation compared to ADC value alone (p = 0.014). There was no significant statistical difference between GS 3 + 4 and GS 4 + 3 mean ADC value (p = 0.167). However when using ADC, there was a significant difference (p = 0.032). ROC curve analysis demonstrated an area under the curve of 0.83 using ADC and 0.76 when using ADC value when discriminating Gleason 6 from Gleason ≥7 tumours. Inter-observer reliability in the calculation of ADC ratios was excellent, with ICC of 0.964.

CONCLUSION

ADC is a reliable and reproducible tool in quantification of diffusion restriction for clinically significant prostate cancer foci.

摘要

引言

本研究旨在探讨扩散加权磁共振成像(Diffusion MRI)中的表观扩散系数(ADC)在鉴别前列腺良恶性病变中的应用价值。

方法

回顾性分析在MRI引导下进行前列腺病变活检患者的图像。纳入标准为每个穿刺针芯中Gleason评分(GS)模式3+3=6占比20%或更多,或存在任何体积的更高Gleason评分模式的前列腺癌患者。两名阅片者分别计算每个病变的ADC值。通过将病变内最低ADC值除以周围带(PZ)正常前列腺组织中的最高ADC值来计算每个病变的ADC值。将ADC值与活检结果进行比较。采用独立样本t检验、Spearman相关性分析、组内相关系数(ICC)和受试者工作特征(ROC)曲线进行数据分析。

结果

分析了33例患者的45个病变。其中12个病变位于移行带(TZ),33个病变位于外周带(PZ)。所有病变的ADC值均≤0.45。GS与ADC值及ADC均呈负相关。然而,与单独的ADC值(p=0.014)相比,ADC(p<0.001)显示出更强的相关性。GS 3+4和GS 4+3的平均ADC值之间无显著统计学差异(p=0.167)。然而,使用ADC时存在显著差异(p=0.032)。ROC曲线分析显示,在鉴别Gleason 6级与Gleason≥7级肿瘤时,使用ADC的曲线下面积为0.83,使用ADC值时为0.76。ADC比值计算的观察者间可靠性极佳,ICC为0.964。

结论

ADC是一种可靠且可重复的工具,用于定量评估具有临床意义的前列腺癌病灶的扩散受限情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6482/5910169/3bbfe129eb3c/gr1.jpg

相似文献

1
Correlation of apparent diffusion coefficient ratio on 3.0 T MRI with prostate cancer Gleason score.
Eur J Radiol Open. 2018 Mar 30;5:58-63. doi: 10.1016/j.ejro.2018.03.002. eCollection 2018.
3
Apparent Diffusion Coefficient (ADC) Ratio Versus Conventional ADC for Detecting Clinically Significant Prostate Cancer With 3-T MRI.
AJR Am J Roentgenol. 2019 Sep;213(3):W134-W142. doi: 10.2214/AJR.19.21365. Epub 2019 Jun 19.
5
Apparent diffusion coefficient ratio correlates significantly with prostate cancer gleason score at final pathology.
J Magn Reson Imaging. 2015 Aug;42(2):446-53. doi: 10.1002/jmri.24801. Epub 2014 Nov 19.
6
Evaluation of ADC on liver MRI diffusion to discriminate benign versus malignant solid liver lesions.
Eur J Radiol Open. 2018 Nov 15;5:209-214. doi: 10.1016/j.ejro.2018.10.002. eCollection 2018.
9
Differentiation of prostate cancer lesions in the Transition Zone by diffusion-weighted MRI.
Eur J Radiol Open. 2017 Sep 29;4:123-128. doi: 10.1016/j.ejro.2017.08.003. eCollection 2017.
10
Diagnostic evaluation of diffusion kurtosis imaging for prostate cancer: Detection in a biopsy population.
Eur J Radiol. 2019 Sep;118:138-146. doi: 10.1016/j.ejrad.2019.07.009. Epub 2019 Jul 10.

引用本文的文献

2
Quantitative magnetic resonance imaging in prostate cancer: A review of current technology.
World J Radiol. 2024 Oct 28;16(10):497-511. doi: 10.4329/wjr.v16.i10.497.
3
Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: A systematic review and meta-analysis.
Eur Radiol. 2025 Jan;35(1):404-416. doi: 10.1007/s00330-024-10890-6. Epub 2024 Jul 12.
5
Non-timely clinically applicable ADC ratio in prostate mpMRI: a comparison with fusion biopsy results.
Abdom Radiol (NY). 2022 Nov;47(11):3855-3867. doi: 10.1007/s00261-022-03627-w. Epub 2022 Aug 9.
9
Utility of Restriction Spectrum Imaging Among Men Undergoing First-Time Biopsy for Suspected Prostate Cancer.
AJR Am J Roentgenol. 2019 Aug;213(2):365-370. doi: 10.2214/AJR.18.20836. Epub 2019 Apr 30.

本文引用的文献

1
A systematic review on multiparametric MR imaging in prostate cancer detection.
Infect Agent Cancer. 2017 Oct 30;12:57. doi: 10.1186/s13027-017-0168-z. eCollection 2017.
3
Prognostic value of the new Grade Groups in Prostate Cancer: a multi-institutional European validation study.
Prostate Cancer Prostatic Dis. 2017 Jun;20(2):197-202. doi: 10.1038/pcan.2016.66. Epub 2017 Jan 10.
4
Correlation between apparent diffusion coefficient value on diffusion-weighted MR imaging and Gleason score in prostate cancer.
Diagn Interv Imaging. 2017 Jan;98(1):63-71. doi: 10.1016/j.diii.2016.08.009. Epub 2016 Sep 27.
5
PI-RADS Version 2: A Pictorial Update.
Radiographics. 2016 Sep-Oct;36(5):1354-72. doi: 10.1148/rg.2016150234. Epub 2016 Jul 29.
7
PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2.
Eur Urol. 2016 Jan;69(1):16-40. doi: 10.1016/j.eururo.2015.08.052. Epub 2015 Oct 1.
9
Apparent diffusion coefficient ratio correlates significantly with prostate cancer gleason score at final pathology.
J Magn Reson Imaging. 2015 Aug;42(2):446-53. doi: 10.1002/jmri.24801. Epub 2014 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验