ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain.
CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
Nat Commun. 2018 Apr 24;9(1):1633. doi: 10.1038/s41467-018-03864-y.
Two-dimensional (2D) semiconducting materials are promising building blocks for optoelectronic applications, many of which require efficient dissociation of excitons into free electrons and holes. However, the strongly bound excitons arising from the enhanced Coulomb interaction in these monolayers suppresses the creation of free carriers. Here, we identify the main exciton dissociation mechanism through time and spectrally resolved photocurrent measurements in a monolayer WSe p-n junction. We find that under static in-plane electric field, excitons dissociate at a rate corresponding to the one predicted for tunnel ionization of 2D Wannier-Mott excitons. This study is essential for understanding the photoresponse of 2D semiconductors and offers design rules for the realization of efficient photodetectors, valley dependent optoelectronics, and novel quantum coherent phases.
二维(2D)半导体材料是光电应用的有前途的构建模块,其中许多应用都需要有效地将激子分解为自由电子和空穴。然而,在这些单层中增强的库仑相互作用产生的强束缚激子抑制了自由载流子的产生。在这里,我们通过在单层 WSe p-n 结中进行时间分辨和光谱分辨光电流测量来确定主要的激子解离机制。我们发现,在静态平面内电场下,激子的解离速率与二维 Wannier-Mott 激子隧道电离预测的速率相对应。这项研究对于理解二维半导体的光响应至关重要,并为实现高效光探测器、谷依赖光电学和新型量子相干相提供了设计规则。