Suppr超能文献

单层MoS/Au(111)异质结构纳米级应变区域中光对电子能带结构的强烈增强重整化作用

Strongly Enhanced Electronic Bandstructure Renormalization by Light in Nanoscale Strained Regions of Monolayer MoS/Au(111) Heterostructures.

作者信息

Park Akiyoshi, Kantipudi Rohit, Göser Jonas, Chen Yinan, Hao Duxing, Yeh Nai-Chang

机构信息

Department of Physics, California Institute of Technology, Pasadena, California 91125, United States.

Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

ACS Nano. 2024 Oct 29;18(43):29618-29635. doi: 10.1021/acsnano.4c07448. Epub 2024 Oct 14.

Abstract

Understanding and controlling the photoexcited quasiparticle (QP) dynamics in monolayer (ML) transition metal dichalcogenides (TMDs) lays the foundation for exploring the strongly interacting, nonequilibrium two-dimensional (2D) QP and polaritonic states in these quantum materials and for harnessing the properties emerging from these states for optoelectronic applications. In this study, scanning tunneling microscopy/spectroscopy (STM/scanning tunneling spectroscopy) with light illumination at the tunneling junction is performed to investigate the QP dynamics in ML MoS on an Au(111) substrate with nanoscale corrugations. The corrugations on the surface of the substrate induce nanoscale local strain in the overlaying ML MoS single crystal, which result in energetically favorable spatial regions where photoexcited QPs, including excitons, trions, and electron-hole plasmas, accumulate. These strained regions exhibit pronounced electronic bandstructure renormalization as a function of the photoexcitation wavelength and intensity as well as the strain gradient, implying strong interplay among nanoscale structures, strain, and photoexcited QPs. In conjunction with the experimental work, we construct a theoretical framework that integrates nonuniform nanoscale strain into the electronic bandstructure of a ML MoS lattice using a tight-binding approach combined with first-principle calculations. This methodology enables better understanding of the experimental observation of photoexcited QP localization in the nanoscale strain-modulated electronic bandstructure landscape. Our findings illustrate the feasibility of utilizing nanoscale architectures and optical excitations to manipulate the local electronic bandstructure of ML TMDs and to enhance the many-body interactions of excitons, which is promising for the development of nanoscale energy-adjustable optoelectronic and photonic technologies, including quantum emitters and solid-state quantum simulators for interacting exciton polaritons based on engineered periodic nanoscale trapping potentials.

摘要

理解并控制单层(ML)过渡金属二硫属化物(TMD)中的光激发准粒子(QP)动力学,为探索这些量子材料中强相互作用的非平衡二维(2D)QP和极化激元态以及利用这些态产生的特性用于光电子应用奠定了基础。在本研究中,利用隧穿结处的光照进行扫描隧道显微镜/光谱(STM/扫描隧道光谱),以研究具有纳米级起伏的Au(111)衬底上的ML MoS中的QP动力学。衬底表面的起伏在覆盖的ML MoS单晶中诱导出纳米级局部应变,这导致光激发的QP(包括激子、三重子和电子 - 空穴等离子体)在能量上有利的空间区域积累。这些应变区域表现出明显的电子能带结构重整化,它是光激发波长、强度以及应变梯度的函数,这意味着纳米级结构、应变和光激发QP之间存在强烈的相互作用。结合实验工作,我们构建了一个理论框架,该框架使用紧束缚方法结合第一性原理计算,将非均匀纳米级应变整合到ML MoS晶格的电子能带结构中。这种方法能够更好地理解在纳米级应变调制的电子能带结构景观中光激发QP局域化的实验观测结果。我们的研究结果说明了利用纳米级结构和光激发来操纵ML TMD的局部电子能带结构以及增强激子多体相互作用的可行性,这对于纳米级能量可调光电子和光子技术的发展很有前景,包括基于工程化周期性纳米级捕获势的量子发射器和用于相互作用激子极化激元的固态量子模拟器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15bf/11526430/8698e0a657ca/nn4c07448_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验