Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland.
Am J Physiol Renal Physiol. 2018 Aug 1;315(2):F332-F335. doi: 10.1152/ajprenal.00126.2018. Epub 2018 Apr 25.
Novel technologies, new understanding of the basement membrane composition, and better comprehension of the embryonic development of the mammalian kidney have led to explosive growth in the use of three-dimensional in vitro models to study a range of human disease pathologies (Clevers H. Cell 165: 1586-1597, 2016; Shamir ER, Ewald AJ. Nat Rev Mol Cell Biol 15: 647-664, 2014). The development of these effective model systems represents a new tool to study the progressive cystogenesis of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a prevalent and complex monogenetic disease, characterized by the pathological formation of fluid fill cysts in renal tissue (Grantham JJ, Mulamalla S, Swenson-Fields KI. Nat Rev Nephrol 7: 556-566, 2011; Takiar V, Caplan MJ. Biochim Biophys Acta 1812: 1337-1343, 2011). ADPKD cystogenesis is attributed to loss of function mutations in either PKD1 or PKD2, which encode for two transmembrane proteins, polycystin-1 and polycystin-2, and progresses with loss of both copies of either gene through a proposed two-hit mechanism with secondary somatic mutations (Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Biochem Biophys Res Commun 322: 1374-1383, 2004; Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, Germino G, St George-Hyslop P. Am Soc Nephrol 10: 1524-1529, 1999; Wu G, D'Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S. Cell 93: 177-188, 1998). The exaggerated consequences of large fluid filled cysts result in fibrosis and nephron injury, leading initially to functional compensation but ultimately to dysfunction (Grantham JJ. Am J Kidney Dis 28: 788-803, 1996; Norman J. Biochim Biophys Acta 1812: 1327-1336, 2011; Song CJ, Zimmerman KA, Henke SJ, Yoder BK. Results Probl Cell Differ 60: 323-344, 2017). The complicated disease progression has scattered focus and resources across the spectrum of ADPKD research.
新技术、对基底膜组成的新认识以及对哺乳动物肾脏胚胎发育的更好理解,促使人们大量使用三维体外模型来研究一系列人类疾病病理学(Clevers H. Cell 165: 1586-1597, 2016; Shamir ER, Ewald AJ. Nat Rev Mol Cell Biol 15: 647-664, 2014)。这些有效模型系统的发展为研究常染色体显性多囊肾病(ADPKD)的囊泡渐进性发生提供了新的工具。ADPKD 是一种常见且复杂的单基因疾病,其特征是肾脏组织中病理性形成充满液体的囊肿(Grantham JJ, Mulamalla S, Swenson-Fields KI. Nat Rev Nephrol 7: 556-566, 2011; Takiar V, Caplan MJ. Biochim Biophys Acta 1812: 1337-1343, 2011)。ADPKD 的囊泡发生归因于 PKD1 或 PKD2 中功能丧失突变,这两个基因分别编码两个跨膜蛋白,多囊蛋白-1 和多囊蛋白-2,并通过提出的两次打击机制进展,该机制涉及两个基因的任一基因的两个拷贝的丢失,并伴有继发性体细胞突变(Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Biochem Biophys Res Commun 322: 1374-1383, 2004; Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, Germino G, St George-Hyslop P. Am Soc Nephrol 10: 1524-1529, 1999; Wu G, D'Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S. Cell 93: 177-188, 1998)。大的充满液体的囊肿的夸张后果导致纤维化和肾单位损伤,最初导致功能代偿,但最终导致功能障碍(Grantham JJ. Am J Kidney Dis 28: 788-803, 1996; Norman J. Biochim Biophys Acta 1812: 1327-1336, 2011; Song CJ, Zimmerman KA, Henke SJ, Yoder BK. Results Probl Cell Differ 60: 323-344, 2017)。复杂的疾病进展使 ADPKD 研究的各个方面都分散了注意力和资源。