a Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular y Celular, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC and BIFI-CSIC Joint Units) , Universidad de Zaragoza , Zaragoza , Spain.
b Fundación ARAID, Diputación General de Aragón , Zaragoza , Spain.
J Enzyme Inhib Med Chem. 2018 Dec;33(1):842-849. doi: 10.1080/14756366.2018.1461857.
Emergence of multidrug-resistant bacteria forces us to explore new therapeutic strategies, and proteins involved in key metabolic pathways are promising anti-bacterial targets. Bifunctional flavin-adenine dinucleotide (FAD) synthetases (FADS) are prokaryotic enzymes that synthesise the flavin mononucleotide (FMN) and FAD cofactors. The FADS from the human pathogen Streptococcus pneumoniae (SpnFADS)-causative agent of pneumonia in humans - shows relevant catalytic dissimilarities compared to other FADSs. Here, by integrating thermodynamic and kinetic data, we present a global description of the riboflavin kinase activity of SpnFADS, as well as of the inhibition mechanisms regulating this activity. Our data shed light on biophysical determinants that modulate species-specific conformational changes leading to catalytically competent conformations, as well as binding rates and affinities of substrates versus products. This knowledge paves the way for the development of tools - that taking advantage of the regulatory dissimilarities during FMN biosynthesis in different species - might be used in the discovery of specific anti-pneumococcal drugs.
多药耐药菌的出现迫使我们探索新的治疗策略,而参与关键代谢途径的蛋白质是有前途的抗菌靶点。双功能黄素腺嘌呤二核苷酸(FAD)合成酶(FADS)是合成黄素单核苷酸(FMN)和 FAD 辅因子的原核酶。人类病原体肺炎链球菌(SpnFADS)的 FADS-人类肺炎的病原体-与其他 FADS 相比,表现出相关的催化差异。在这里,我们通过整合热力学和动力学数据,对 SpnFADS 的核黄素激酶活性以及调节这种活性的抑制机制进行了全面描述。我们的数据揭示了调节物种特异性构象变化的生物物理决定因素,这些构象变化导致催化活性构象以及底物与产物的结合速率和亲和力。这一知识为开发工具铺平了道路,这些工具-利用不同物种中 FMN 生物合成过程中的调节差异-可用于发现针对肺炎球菌的特定药物。