Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany.
Biophys J. 2018 Apr 24;114(8):1970-1979. doi: 10.1016/j.bpj.2018.02.039.
Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application.
单分子操纵技术为研究生物大分子的结构、功能、相互作用和力学特性提供了前所未有的见解。最近,能够测量旋转和扭矩的技术扩展了单分子工具包,例如光学扭矩扳手(OTW)和几种不同的磁(扭矩)镊子实现方式。尽管对单分子技术的位置和力精度的系统分析引起了相当大的关注,但它们的角度和扭矩精度却没有得到详细的研究。在这里,我们提出 Allan 偏差作为系统量化单分子测量中角度和扭矩精度的工具。我们将 Allan 方差方法应用于我们的(电磁)扭矩镊子和 OTW 的实验数据,发现这两种方法都可以实现优于 1 pN·nm 的扭矩精度。OTW 能够在(亚)毫秒时间尺度上测量扭矩,对于 ≲10 s 的测量时间,它提供了最佳的扭矩精度,之后漂移成为限制因素。对于更长的测量时间,具有卓越稳定性的磁扭矩镊子提供了最佳的扭矩精度。使用 Allan 偏差可以在不同的测量模式下,对扭矩精度随测量时间的函数进行关键评估,并为给定的仪器和应用优化测量协议提供工具。