Department of Molecular Biology, University of Wyoming, Laramie, WY 82071;
Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10167-72. doi: 10.1073/pnas.1324301111. Epub 2014 Jun 30.
Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset.
细菌视紫红质在近红外窗口感知光,该光谱区域是哺乳动物组织吸收最小的区域,其辅基胆绿素 IXα天然存在于动物细胞中。这些特性使得细菌视紫红质特别适合用于光遗传学应用。然而,由于缺乏对光诱导构象变化如何控制输出活性的理解,阻碍了基于细菌视紫红质的光遗传学工具的工程设计。许多细菌视紫红质作为同二聚体酶发挥作用,其中光诱导的构象变化通过α-螺旋接头传递到刚性的输出结构域。我们假设,需要同二聚化的异源输出结构域可以融合到细菌视紫红质的光敏模块上,以产生光激活融合蛋白。在这里,我们通过使用 Rhodobacter sphaeroides 细菌视紫红质 BphG1 的光敏模块和 Nostoc sp. CyaB1 的环化酶结构域,来设计受近红外光谱窗口中光调控的腺苷酸环化酶,从而验证了这一假设。我们设计了几种光激活融合蛋白,它们彼此之间相差一个或两个α-螺旋圈,这表明输出结构域在同一螺旋相位中的定位对于光依赖性活性很重要。对其中一种融合蛋白进行广泛的诱变,得到了一个光动力范围扩大了六倍的腺苷酸环化酶。进一步的诱变产生了一种具有更稳定的光激活状态的酶。当在秀丽隐杆线虫的胆碱能神经元中表达时,工程化的腺苷酸环化酶以依赖光的方式影响蠕虫的行为。本研究获得的见解可应用于其他同二聚体细菌视紫红质的工程设计,这将进一步扩展光遗传学工具集。