Suppr超能文献

使用磁珠亲和纯化法从酿酒酵母中分离线粒体。

Isolation of mitochondria from Saccharomyces cerevisiae using magnetic bead affinity purification.

机构信息

Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America.

Department of Neurology, Columbia University, New York, NY, United States of America.

出版信息

PLoS One. 2018 Apr 26;13(4):e0196632. doi: 10.1371/journal.pone.0196632. eCollection 2018.

Abstract

Isolated mitochondria are widely used to study the function of the organelle. Typically, mitochondria are prepared using differential centrifugation alone or in conjunction with density gradient ultracentrifugation. However, mitochondria isolated using differential centrifugation contain membrane or organelle contaminants, and further purification of crude mitochondria by density gradient ultracentrifugation requires large amounts of starting material, and is time-consuming. Mitochondria have also been isolated by irreversible binding to antibody-coated magnetic beads. We developed a method to prepare mitochondria from budding yeast that overcomes many of the limitations of other methods. Mitochondria are tagged by insertion of 6 histidines (6xHis) into the TOM70 (Translocase of outer membrane 70) gene at its chromosomal locus, isolated using Ni-NTA (nickel (II) nitrilotriacetic acid) paramagnetic beads and released from the magnetic beads by washing with imidazole. Mitochondria prepared using this method contain fewer contaminants, and are similar in ultrastructure as well as protein import and cytochrome c oxidase complex activity compared to mitochondria isolated by differential centrifugation. Moreover, this isolation method is amenable to small samples, faster than purification by differential and density gradient centrifugation, and more cost-effective than purification using antibody-coated magnetic beads. Importantly, this method can be applied to any cell type where the genetic modification can be introduced by CRISPR or other methods.

摘要

分离的线粒体被广泛用于研究细胞器的功能。通常,线粒体的制备方法是单独使用差速离心或与密度梯度超速离心结合使用。然而,使用差速离心分离的线粒体含有膜或细胞器污染物,并且通过密度梯度超速离心进一步纯化粗线粒体需要大量的起始材料,并且耗时。线粒体也可以通过不可逆地与抗体包被的磁珠结合来分离。我们开发了一种从芽殖酵母中制备线粒体的方法,该方法克服了其他方法的许多限制。线粒体通过在其染色体位置将 6 个组氨酸(6xHis)插入外膜转位酶 70(TOM70)基因中来标记,然后使用 Ni-NTA(镍(II)亚氨基二乙酸)顺磁珠进行分离,并通过用咪唑洗涤从磁珠上洗脱。与使用差速离心分离的线粒体相比,使用这种方法制备的线粒体含有较少的污染物,在超微结构以及蛋白导入和细胞色素 c 氧化酶复合物活性方面也相似。此外,这种分离方法适用于小样本,比差速和密度梯度离心纯化更快,并且比使用抗体包被的磁珠纯化更具成本效益。重要的是,该方法可以应用于任何可以通过 CRISPR 或其他方法进行遗传修饰的细胞类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cce/5919621/fe7ab87df16f/pone.0196632.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验