Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
Methods Enzymol. 2024;706:19-36. doi: 10.1016/bs.mie.2024.07.032. Epub 2024 Aug 14.
Isolated mitochondria have been widely utilized in various model organisms to investigate the diverse functions of the organelle. Techniques such as differential centrifugation, density gradient ultracentrifugation and antibody-coated magnetic beads are employed for isolation of the organelle from whole cells. However, mitochondria isolated using differential centrifugation are often contaminated with other organelles; isolation using density gradient ultracentrifugation can reduce contamination but is time-intensive and requires large amounts of starting materials; and mitochondria isolated using antibody-coated magnetic beads are irreversibly bound to the beads. Here, we provide a step-by-step protocol for the isolation of highly pure mitochondria from Saccharomyces cerevisiae using a magnetic bead affinity purification method that overcomes these limitations. This protocol describes how to isolate mitochondria, tagged by insertion of 6 histidines (6xHis) into the chromosomal copy of the TOM70 (Translocase of outer membrane 70) gene using Ni-NTA (nickel(II) nitrilotriacetic acid) paramagnetic beads, and the subsequent release of mitochondria from the beads using a buffer containing imidazole. We provide examples of expected results, highlighting the purity, integrity and import activity of isolated mitochondria. These affinity-purified mitochondria are intact and functional, containing less contamination with cytosol and other organelles compared to mitochondria isolated by other methods. Our method is adaptable and can be applied to other model organisms that can be genetically manipulated using CRISPR or other methods.
已广泛使用分离的线粒体在各种模式生物中研究细胞器的多种功能。例如差速离心、密度梯度超速离心和抗体包被的磁珠等技术可用于从整个细胞中分离细胞器。然而,使用差速离心分离的线粒体常常受到其他细胞器的污染;使用密度梯度超速离心分离可以减少污染,但耗时且需要大量起始材料;而使用抗体包被的磁珠分离的线粒体不可逆地结合到磁珠上。在这里,我们提供了一种使用磁珠亲和纯化方法从酿酒酵母中分离高度纯净的线粒体的分步方案,该方法克服了这些限制。该方案描述了如何使用 Ni-NTA(镍(II)亚氨基二乙酸)顺磁珠将 6 个组氨酸(6xHis)插入 TOM70(外膜转位酶 70)基因的染色体拷贝中,对酵母进行标记,然后使用含有咪唑的缓冲液从磁珠上释放线粒体。我们提供了预期结果的示例,突出显示了分离的线粒体的纯度、完整性和导入活性。与使用其他方法分离的线粒体相比,这些亲和纯化的线粒体完整性和功能保持不变,胞质溶胶和其他细胞器的污染较少。我们的方法具有适应性,可以应用于其他可以使用 CRISPR 或其他方法进行遗传操作的模式生物。