Suppr超能文献

使用顺磁性氧化铁纳米颗粒进行无离心磁性分离功能性线粒体

Centrifugation-Free Magnetic Isolation of Functional Mitochondria Using Paramagnetic Iron Oxide Nanoparticles.

作者信息

Banik Bhabatosh, Dhar Shanta

机构信息

Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida.

Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.

出版信息

Curr Protoc Cell Biol. 2017 Sep 1;76:25.4.1-25.4.20. doi: 10.1002/cpcb.26.

Abstract

Subcellular fractionation techniques are essential for cell biology and drug development studies. The emergence of organelle-targeted nanoparticle (NP) platforms necessitates the isolation of target organelles to study drug delivery and activity. Mitochondria-targeted NPs have attracted the attention of researchers around the globe, since mitochondrial dysfunctions can cause a wide range of diseases. Conventional mitochondria isolation methods involve high-speed centrifugation. The problem with high-speed centrifugation-based isolation of NP-loaded mitochondria is that NPs can pellet even if they are not bound to mitochondria. We report development of a mitochondria-targeted paramagnetic iron oxide nanoparticle, Mito-magneto, that enables isolation of mitochondria under the influence of a magnetic field. Isolation of mitochondria using Mito-magneto eliminates artifacts typically associated with centrifugation-based isolation of NP-loaded mitochondria, thus producing intact, pure, and respiration-active mitochondria. © 2017 by John Wiley & Sons, Inc.

摘要

亚细胞分级分离技术对于细胞生物学和药物开发研究至关重要。细胞器靶向纳米颗粒(NP)平台的出现使得分离目标细胞器以研究药物递送和活性成为必要。线粒体靶向NP吸引了全球研究人员的关注,因为线粒体功能障碍可导致多种疾病。传统的线粒体分离方法涉及高速离心。基于高速离心分离负载NP的线粒体的问题在于,即使NP未与线粒体结合,它们也可能沉淀。我们报告了一种线粒体靶向顺磁性氧化铁纳米颗粒Mito-magneto的开发,该颗粒能够在磁场影响下分离线粒体。使用Mito-magneto分离线粒体消除了通常与基于离心分离负载NP的线粒体相关的假象,从而产生完整、纯净且具有呼吸活性的线粒体。© 2017年约翰威立父子公司版权所有

相似文献

1
Centrifugation-Free Magnetic Isolation of Functional Mitochondria Using Paramagnetic Iron Oxide Nanoparticles.
Curr Protoc Cell Biol. 2017 Sep 1;76:25.4.1-25.4.20. doi: 10.1002/cpcb.26.
2
Mito-magneto: a tool for nanoparticle mediated mitochondria isolation.
Nanoscale. 2016 Dec 1;8(47):19581-19591. doi: 10.1039/c6nr05882e.
3
Isolation of mitochondria from Saccharomyces cerevisiae using magnetic bead affinity purification.
PLoS One. 2018 Apr 26;13(4):e0196632. doi: 10.1371/journal.pone.0196632. eCollection 2018.
4
Magnetic nanoparticles: an improved method for mitochondrial isolation.
Mol Med Rep. 2012 May;5(5):1271-6. doi: 10.3892/mmr.2012.806. Epub 2012 Feb 23.
5
Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin.
Nanomedicine. 2015 Jan;11(1):47-55. doi: 10.1016/j.nano.2014.07.007. Epub 2014 Aug 4.
7
Facile one-pot fabrication of calcium phosphate-based composite nanoparticles as delivery and MRI contrast agents for macrophages.
Colloids Surf B Biointerfaces. 2018 Feb 1;162:135-145. doi: 10.1016/j.colsurfb.2017.11.034. Epub 2017 Nov 15.
8
Evaluation of basic mitochondrial functions using rat tissue homogenates.
Mitochondrion. 2011 Sep;11(5):722-8. doi: 10.1016/j.mito.2011.05.006. Epub 2011 Jun 2.

引用本文的文献

1
Isolation of Mitochondria From Yeast to Estimate Mitochondrial Pools of Inorganic Phosphate.
Bio Protoc. 2025 Jul 5;15(13):e5370. doi: 10.21769/BioProtoc.5370.
2
Isolation of yeast mitochondria by affinity purification using magnetic beads.
Methods Enzymol. 2024;706:19-36. doi: 10.1016/bs.mie.2024.07.032. Epub 2024 Aug 14.
3
Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases.
Nanoscale Adv. 2023 Jul 28;5(17):4354-4367. doi: 10.1039/d3na00180f. eCollection 2023 Aug 24.
4
Understanding intracellular nanoparticle trafficking fates through spatiotemporally resolved magnetic nanoparticle recovery.
Nanoscale Adv. 2021 Mar 3;3(9):2397-2410. doi: 10.1039/d0na01035a. eCollection 2021 May 4.
5
Targeted Mitochondrial Delivery to Hepatocytes: A Review.
J Clin Transl Hepatol. 2022 Apr 28;10(2):321-328. doi: 10.14218/JCTH.2021.00093. Epub 2021 Oct 19.
6
Recent advances, status, and opportunities of magneto-electric nanocarriers for biomedical applications.
Mol Aspects Med. 2022 Feb;83:101046. doi: 10.1016/j.mam.2021.101046. Epub 2021 Nov 4.
7
Isolation of mitochondria from cells and tissues.
Methods Cell Biol. 2020;155:3-31. doi: 10.1016/bs.mcb.2019.10.002. Epub 2019 Dec 10.
9
An Improved Method for Preparation of Uniform and Functional Mitochondria from Fresh Liver.
J Clin Transl Hepatol. 2019 Mar 28;7(1):46-50. doi: 10.14218/JCTH.2018.00064. Epub 2019 Mar 27.
10
Isolation of mitochondria from Saccharomyces cerevisiae using magnetic bead affinity purification.
PLoS One. 2018 Apr 26;13(4):e0196632. doi: 10.1371/journal.pone.0196632. eCollection 2018.

本文引用的文献

1
Turn up the cellular power generator with vitamin E analogue formulation.
Chem Sci. 2016 Aug 1;7(8):5559-5567. doi: 10.1039/c6sc00481d. Epub 2016 May 9.
2
Mito-magneto: a tool for nanoparticle mediated mitochondria isolation.
Nanoscale. 2016 Dec 1;8(47):19581-19591. doi: 10.1039/c6nr05882e.
3
Nanotechnology inspired tools for mitochondrial dysfunction related diseases.
Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):52-69. doi: 10.1016/j.addr.2015.12.024. Epub 2016 Jan 9.
4
New formulation of old aspirin for better delivery.
Chem Commun (Camb). 2016 Jan 4;52(1):140-3. doi: 10.1039/c5cc07316b.
6
Targeted nanoparticles in mitochondrial medicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):315-29. doi: 10.1002/wnan.1305. Epub 2014 Oct 27.
7
Detouring of cisplatin to access mitochondrial genome for overcoming resistance.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10444-9. doi: 10.1073/pnas.1405244111. Epub 2014 Jul 7.
8
Mitochondrial dysfunction in cancer.
Front Oncol. 2013 Dec 2;3:292. doi: 10.3389/fonc.2013.00292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验