Banik Bhabatosh, Dhar Shanta
Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida.
Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
Curr Protoc Cell Biol. 2017 Sep 1;76:25.4.1-25.4.20. doi: 10.1002/cpcb.26.
Subcellular fractionation techniques are essential for cell biology and drug development studies. The emergence of organelle-targeted nanoparticle (NP) platforms necessitates the isolation of target organelles to study drug delivery and activity. Mitochondria-targeted NPs have attracted the attention of researchers around the globe, since mitochondrial dysfunctions can cause a wide range of diseases. Conventional mitochondria isolation methods involve high-speed centrifugation. The problem with high-speed centrifugation-based isolation of NP-loaded mitochondria is that NPs can pellet even if they are not bound to mitochondria. We report development of a mitochondria-targeted paramagnetic iron oxide nanoparticle, Mito-magneto, that enables isolation of mitochondria under the influence of a magnetic field. Isolation of mitochondria using Mito-magneto eliminates artifacts typically associated with centrifugation-based isolation of NP-loaded mitochondria, thus producing intact, pure, and respiration-active mitochondria. © 2017 by John Wiley & Sons, Inc.
亚细胞分级分离技术对于细胞生物学和药物开发研究至关重要。细胞器靶向纳米颗粒(NP)平台的出现使得分离目标细胞器以研究药物递送和活性成为必要。线粒体靶向NP吸引了全球研究人员的关注,因为线粒体功能障碍可导致多种疾病。传统的线粒体分离方法涉及高速离心。基于高速离心分离负载NP的线粒体的问题在于,即使NP未与线粒体结合,它们也可能沉淀。我们报告了一种线粒体靶向顺磁性氧化铁纳米颗粒Mito-magneto的开发,该颗粒能够在磁场影响下分离线粒体。使用Mito-magneto分离线粒体消除了通常与基于离心分离负载NP的线粒体相关的假象,从而产生完整、纯净且具有呼吸活性的线粒体。© 2017年约翰威立父子公司版权所有