Suppr超能文献

促性腺激素刺激:过去、现在与未来。

Gonadotropin stimulation: past, present and future.

作者信息

Lunenfeld Bruno

机构信息

Faculty of Life Sciences Bar-Ilan University Ramat Gan Israel.

出版信息

Reprod Med Biol. 2011 Jul 13;11(1):11-25. doi: 10.1007/s12522-011-0097-2. eCollection 2012 Jan.

Abstract

Gonadotropin therapy is so central to infertility treatment that it is easy to overlook the considerable discovery and research that preceded production of the effective and safe products available today. The history underpinning this development spans over 300 years and provides a splendid example of how basic animal experimentation and technological advances have progressed to clinical application. Following the discovery of germ cells in 1677 and realizing, in 1870, that fertilization involved the merging of two cell nuclei, one from the egg and one from sperm, it took another 40 years to discover the interplay between hypothalamus, pituitary and gonads. The potential roles of gonadotropin regulation were discovered in 1927. Gonadotropin, such as pregnant mare serum gonadotropin (PMSG), was first introduced for ovarian stimulation in 1930. However, use of PMSG leads to antibody formation, and had to be withdrawn. Following withdrawal of PMSG, human pituitary gonadotropin (HPG) and urinary menopausal gonadotropin (hMG) appeared on the market, and 50 years ago the first child was delivered by our group in 1961 and opened the path to controlled ovarian stimulation. HPG produced good results, but its use came to an end in the late 1980s when it was linked to the development of Creutzfeldt-Jakob disease (CJD). HMG preparations containing a high percentage of unknown urinary proteins, making quality control almost impossible, were then the only gonadotropins remaining on the market. With the availability of hMG, clomiphene citrate, ergot derivatives, GnRH agonists and antagonists, as well as metformin, algorithms were developed for their optimal utilization and were used for the next four decades. Following the first human IVF baby in 1978 and ICSI in 1991, such procedures became standard practice. The main agents for controlled ovarian stimulation for IVF were gonadotropins and GnRH analogues, with batch to batch consistent gonadotropic preparations; methods could be developed to predict and select the correct dose and the optimal protocol for each patient. We are now seeing the appearance of gonadotropin with sustained action and orally active GnRH analogues as well as orally active molecules capable to stimulate follicle growth and inducing ovulation. These new developments may one day remove the need for the classical gonadotropin in clinical work.

摘要

促性腺激素疗法在不孕症治疗中至关重要,以至于人们很容易忽视在当今有效且安全的产品问世之前所进行的大量发现和研究。这一发展历程跨越了300多年,为基础动物实验和技术进步如何发展到临床应用提供了一个绝佳范例。1677年发现生殖细胞,1870年认识到受精涉及两个细胞核的融合,一个来自卵子,一个来自精子,又过了40年才发现下丘脑、垂体和性腺之间的相互作用。1927年发现了促性腺激素调节的潜在作用。1930年首次引入促性腺激素,如孕马血清促性腺激素(PMSG)用于刺激卵巢。然而,使用PMSG会导致抗体形成,不得不停用。PMSG停用后,人垂体促性腺激素(HPG)和尿促性素(hMG)上市,50年前我们团队于1961年迎来了首例通过促性腺激素治疗出生的婴儿,开启了控制性卵巢刺激的道路。HPG取得了良好效果,但在20世纪80年代末因与克雅氏病(CJD)的发生有关而停止使用。当时,hMG制剂含有高比例未知尿蛋白,几乎无法进行质量控制,成为市场上仅存的促性腺激素。随着hMG、枸橼酸氯米芬、麦角衍生物、GnRH激动剂和拮抗剂以及二甲双胍的出现,人们开发了它们的最佳使用算法,并在接下来的四十年里得到应用。1978年首例人类体外受精婴儿出生以及1991年卵胞浆内单精子注射技术出现后,这些程序成为标准做法。体外受精控制性卵巢刺激的主要药物是促性腺激素和GnRH类似物,促性腺激素制剂批次间一致性良好;可以开发方法来预测和为每位患者选择正确剂量及最佳方案。我们现在看到了具有持续作用的促性腺激素、口服活性GnRH类似物以及能够刺激卵泡生长和诱导排卵的口服活性分子的出现。这些新进展也许有一天会使临床工作不再需要传统促性腺激素。

相似文献

1
Gonadotropin stimulation: past, present and future.促性腺激素刺激:过去、现在与未来。
Reprod Med Biol. 2011 Jul 13;11(1):11-25. doi: 10.1007/s12522-011-0097-2. eCollection 2012 Jan.
3
Ovarian stimulation: from basic science to clinical application.卵巢刺激:从基础科学到临床应用。
Reprod Biomed Online. 2011 Feb;22 Suppl 1:S3-16. doi: 10.1016/S1472-6483(11)60003-5.
4
Ovarian stimulation: from basic science to clinical application.卵巢刺激:从基础科学到临床应用。
Reprod Biomed Online. 2002;5 Suppl 1:73-86. doi: 10.1016/s1472-6483(11)60221-6.
5
The Development of Gonadotropins for Clinical Use in the Treatment of Infertility.用于治疗不孕症的临床促性腺激素的发展
Front Endocrinol (Lausanne). 2019 Jul 3;10:429. doi: 10.3389/fendo.2019.00429. eCollection 2019.

引用本文的文献

7
NUCB2/nesfatin-1 suppresses the acrosome reaction in sperm within the mouse epididymis.NUCB2/nesfatin-1抑制小鼠附睾内精子的顶体反应。
Anim Cells Syst (Seoul). 2023 May 13;27(1):120-128. doi: 10.1080/19768354.2023.2212741. eCollection 2023.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验