Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.
Nat Protoc. 2018 May;13(5):1121-1136. doi: 10.1038/nprot.2018.022. Epub 2018 Apr 26.
Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.
近红外(NIR,740-780nm)光遗传学系统非常适合与蓝光控制工具进行光谱复用。在这里,我们提出了两种方案,一种用于调控基因转录,另一种用于控制蛋白质定位,它们使用了一种对近红外光有响应的细菌叶绿素 BphP1-QPAS1 光遗传学对。在第一个方案中,细胞被转染了光遗传学构建体,用于分别通过近红外(BphP1-QPAS1)和蓝光(LightOn)控制基因转录。NIR 和蓝光控制的基因转录系统显示出最小的光谱串扰,并诱导报告基因表达增加 35-40 倍。在第二个方案中,BphP1-QPAS1 对与基于光氧电压感应(LOV)结构域的构建体组合成一种单一的光遗传学工具,称为 iRIS。这种双光可控的蛋白质定位工具允许蛋白质在细胞质、细胞核和质膜之间进行三向转运。这两个程序都可以在 3-5 天内完成。使用近红外光控制的光遗传学系统应该会推动基础和生物医学研究的发展。