Suppr超能文献

近红外光控制的基因转录调控、蛋白质靶向和光谱复用系统。

Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.

机构信息

Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.

出版信息

Nat Protoc. 2018 May;13(5):1121-1136. doi: 10.1038/nprot.2018.022. Epub 2018 Apr 26.

Abstract

Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.

摘要

近红外(NIR,740-780nm)光遗传学系统非常适合与蓝光控制工具进行光谱复用。在这里,我们提出了两种方案,一种用于调控基因转录,另一种用于控制蛋白质定位,它们使用了一种对近红外光有响应的细菌叶绿素 BphP1-QPAS1 光遗传学对。在第一个方案中,细胞被转染了光遗传学构建体,用于分别通过近红外(BphP1-QPAS1)和蓝光(LightOn)控制基因转录。NIR 和蓝光控制的基因转录系统显示出最小的光谱串扰,并诱导报告基因表达增加 35-40 倍。在第二个方案中,BphP1-QPAS1 对与基于光氧电压感应(LOV)结构域的构建体组合成一种单一的光遗传学工具,称为 iRIS。这种双光可控的蛋白质定位工具允许蛋白质在细胞质、细胞核和质膜之间进行三向转运。这两个程序都可以在 3-5 天内完成。使用近红外光控制的光遗传学系统应该会推动基础和生物医学研究的发展。

相似文献

6
Engineering an E. coli Near-Infrared Light Sensor.构建一种大肠杆菌近红外光传感器。
ACS Synth Biol. 2018 Jan 19;7(1):240-248. doi: 10.1021/acssynbio.7b00289. Epub 2017 Nov 9.

引用本文的文献

3
Opticool: Cutting-edge transgenic optical tools.Opticool:尖端转基因光学工具。
PLoS Genet. 2024 Mar 22;20(3):e1011208. doi: 10.1371/journal.pgen.1011208. eCollection 2024 Mar.
10
Optogenetic approaches in biotechnology and biomaterials.光遗传学方法在生物技术和生物材料中的应用。
Trends Biotechnol. 2022 Jul;40(7):858-874. doi: 10.1016/j.tibtech.2021.12.007. Epub 2022 Jan 11.

本文引用的文献

2
Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.工程化光激活 caspase-3 用于体内精确消融神经元。
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8174-E8183. doi: 10.1073/pnas.1705064114. Epub 2017 Sep 11.
5
Engineering RGB color vision into Escherichia coli.将 RGB 彩色视觉工程融入大肠杆菌中。
Nat Chem Biol. 2017 Jul;13(7):706-708. doi: 10.1038/nchembio.2390. Epub 2017 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验