Jebessa Endashaw, Ouyang Hongjia, Abdalla Bahareldin Ali, Li Zhenhui, Abdullahi Auwalu Yusuf, Liu Qingshen, Nie Qinghua, Zhang Xiquan
Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
Oncotarget. 2017 Nov 6;9(25):17309-17324. doi: 10.18632/oncotarget.22457. eCollection 2018 Apr 3.
MicroRNAs (miRNAs) are non-coding RNAs that regulate mRNA expression by degradation or translational inhibition. We investigated the underlying molecular mechanisms of skeletal muscle development based on differentially expressed genes and miRNAs. We compared mRNA and miRNA from chicken skeletal muscle at embryonic day E11, E16 and one day post-hatch (P1). The interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down regulated miRNAs or down-regulated genes with up-regulated miRNAs with |log2fold change| ≥ 1.75, < 0.005. The miRNA-mRNA integration analysis showed high number of mRNAs regulated by a few number of miRNAs. In the E11_VS_E16, comparison group we identified biological processes including muscle maintenance, myoblast proliferation and muscle thin filament formation. The E11_VS_P1 group comparison included negative regulation of axon extension, sarcomere organization, and cell redox homeostasis and kinase inhibitor activity. The E16_VS_P1 comparison group contained genes for the negative regulation of anti-apoptosis and axon extension as well as glomerular basement membrane development. Functional assays indicated that over expression of miR-222a and miR-126-5p in DF-1 cells significantly reduced the mRNA levels of the target genes CPEB3 and FGFR3, respectively. These integrated analyses provide several candidates for future studies concerning miRNAs-target function on regulation of embryonic muscle development and growth.
微小RNA(miRNA)是非编码RNA,通过降解或翻译抑制来调节mRNA表达。我们基于差异表达的基因和miRNA研究了骨骼肌发育的潜在分子机制。我们比较了鸡胚胎期第11天(E11)、第16天(E16)和出壳后一天(P1)骨骼肌中的mRNA和miRNA。根据靶标预测结果以及上调基因与下调miRNA或下调基因与上调miRNA(|log2倍数变化|≥1.75,P<0.005)的整合分析构建了相互作用网络。miRNA-mRNA整合分析表明少量miRNA可调控大量mRNA。在E11_VS_E16比较组中,我们鉴定出了包括肌肉维持、成肌细胞增殖和肌细肌丝形成在内的生物学过程。E11_VS_P1组比较包括轴突延伸的负调控、肌节组织、细胞氧化还原稳态和激酶抑制剂活性。E16_VS_P1比较组包含抗凋亡和轴突延伸的负调控以及肾小球基底膜发育相关的基因。功能分析表明,DF-1细胞中miR-222a和miR-126-5p的过表达分别显著降低了靶基因CPEB3和FGFR3的mRNA水平。这些整合分析为未来关于miRNA靶标功能对胚胎肌肉发育和生长调控的研究提供了几个候选对象。